

Deliverable reference: Date: Responsible partner:

D08.2 11 May 2015 CNet Svenska AB

Bridging Resources and Agencies in Large-Scale Emergency Management

BRIDGE is a collaborative project co-funded by the European Commission within
 the Seventh Framework Programme (FP7-SEC-2010-1)

SEC-2010.4.2-1: Interoperability of data, systems, tools and equipment
Grant Agreement No.: 261817

Duration: 1 April 2011 – 31 March 2015

www.sec-bridge.eu

Title:

Integrated and Quality Assured BRIDGE platform

Editor(s): Approved by:

Peeter Kool PCC
Classification:

Public
Abstract / Executive summary:

This deliverable describes the prototype D08.2 Integrated and Quality Assured BRIDGE platform.

The main part of the deliverable describes some typical integration cases in detail, outlining how the

BRIDGE platform can be reused and extended. There is also a section that describes which tools and

software components are available from the project and how to use them.

Note that this is not the final version of the deliverable but it will be extended and submitted before

the end of the project. The main addition that will be added is the example of creating and extending

the BRIDGE platform with protocol transformations, see section 2.3. Finally, the Open Source

section 4 will be updated with additional components.

Document URL:
http://www.sec-bridge.eu/deliverables/...

ISBN number:
-

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 2 of 45

Table of Contents

Integrated and Quality Assured BRIDGE platform .. 1

Table of Contents .. 2

Version History ... 3

Contributing partners ... 4

List of Figures .. 5

List of Abbreviations .. 6

1 Introduction ... 7

2 Integrations .. 9

2.1 PUBLISHING INFORMATION AND EVENTS ... 9

2.1.1 The BRIDGE ASA Integration Service ... 10

2.2 CONSUMING INFORMATION AND EVENTS ... 17

2.2.1 The BRIDGE WISE Integration Service ... 18

2.3 CREATING A PROTOCOL TRANSFORMATION ... 23

2.4 ENABLING A SERVICE IN THE BRIDGE PLATFORM .. 23

2.4.1 Enabling a service on the BRIDGE network .. 24

2.4.2 Registering Service Metadata in the IoTResource Catalogue .. 26

3 Development Tools... 29

3.1 IOTRESOURCE BUILDER AND SERVICE ANNOTATIONS ... 29

3.1.1 Service annotations... 29

3.1.2 Use of The resource builder ... 30

3.1.3 Components in the IoTResource Builder .. 35

3.2 IOTRESOURCE CATALOGUE .. 40

3.2.1 Catalogue Services and Actions ... 40

3.3 IOTRESOURCE CATALOGUE BROWSER. ... 43

4 Components in Open Source Public Repositories ... 45

4.1 LINKSMART ... 45

4.2 EVE ... 45

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 3 of 45

Version History

Version
1
 Description Date Who

0.1 Initial TOC 7.11.2011 Peeter Kool

0.2 ASA Integration Case 09.06.2014 Peeter Kool,

Aslak Eide,

Antoine Pultier

Mark Vinkovits

0.3 IoTResource Builder, initial content 10.10.2014 Matts Ahlsén

Peeter Kool

0.4 BRIDGE WISE Integration 31.3.2015 Andreas

Carlsson,

Peeter Kool

0.5 Added initial content for Open Source

section

15.4.2015 Peeter Kool,

 Ludo

Stellingwerff

0.6 Edited for final draft version to be submitted

before the review

11.05.2015 Matts Ahlsén

Peeter Kool

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 4 of 45

Contributing partners

CNet
Danderyd

Sweden

Matts Ahlsén

matts.ahlsen@cnet.se

Peeter Kool
Peeter Kool@cnet.se

UNIKLU

Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria

Christian Raffelsberger
christian.raffelsberger@aau.at

FIT

Fraunhofer-Institut für Angewandte

Informationstechnik

Sankt Augustin, Germany

Andreas Zimmermann

andreas.zimmermann@fit.fraunhofer.de

Mark Vinkovits

Mark.vinkovits@fit.fraunhofer.de

SINTEF

Strindveien 4

7034 Trondheim

Norway

Antoine Pultier

Antoine.Pultier@sintef.no

Aslak Eide

Arnor.Solberg@sintef.no

SAAB Group

Sweden

Andreas Carlsson
andreas.ac.carlsson@saabgroup.com

Almende

Rotterdam

Netherlands

Ludo Stellingwerff

ludo@almende.org

mailto:matts.ahlsen@cnet.se
mailto:Peeter%20Kool@cnet.se
mailto:andreas.zimmermann@fit.fraunhofer.de

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 5 of 45

List of Figures
FIGURE 1: BRIDGE SYSTEM OF SYSTEMS CONTEXT.. 7

FIGURE 2: ARCHITECTURE OF THE ASA INTEGRATION ... 9

FIGURE 3: THE BRIDGE ASA INTEGRATION SERVICE ARCHITECTURE .. 11

FIGURE 4: WISE INTEGRATION ARCHITECTURE .. 18

FIGURE 5: BRIDGE WISE INTEGRATION SERVICE ARCHITECTURE .. 19

FIGURE 6: MANUAL IOTRESOURCE CATALOGUE REGISTRATION .. 26

FIGURE 7: SERVICE SUMMARY DESCRIPTION USING THE IOTRESOURCE BUILDER 31

FIGURE 8: SERVICE SUMMARY XML .. 32

FIGURE 9: ACTION ANNOTATION ... 32

FIGURE 10: ACTION ANNOTATION XML ... 33

FIGURE 11: STATE VARIABLE ANNOTATION .. 34

FIGURE 12: ANNOTATIONS FOR STATE VARIABLES ... 35

FIGURE 13: IOTRESOURCE BUILDER COMPONENTS .. 36

FIGURE 14: EXAMPLE OF AN IOTRESOURCE DESCRIPTION XML. COLOURED RECTANGLES REPRESENT THE

ANNOTATION SECTIONS. ... 38

FIGURE 15: DEVELOPMENT ENVIRONMENT GENERATED ... 39

FIGURE 16: IOT RESOURCE CATALOGUE... 40

FIGURE 17: CATALOGUE SERVICES ... 41

FIGURE 18: RESULT OF RESOURCE CATALOGUE QUERY ... 41

FIGURE 19: INITIAL WINDOWS IOT RESOURCE BROWSER WINDOW .. 43

FIGURE 20: SECOND TAB WITH IOT RESOURCES END POINTS .. 43

FIGURE 21: EXPANDED VIEW... 44

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 6 of 45

List of Abbreviations
DLNA Digital Living Network Alliance

EDXL Emergency Data Exchange Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JXTA P2P protocol https://jxta.kenai.com/

P2P Peer to Peer network

REST Representational State Transfer

SCPD Service Control Protocol Description

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

UPnP

USDL

Universal Plug and Play

Unified Service Description Language

WSDL Web Services Description Language

XSLT Extensible Stylesheet Language Transformations

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 7 of 45

1 Introduction
This report describes the prototype deliverable D08.2 Integrated and Quality Assured BRIDGE

platform which is the result from Task 8.2 Integration of System Components.

Figure 1: BRIDGE system of systems context

The BRIDGE system of systems is a very complex platform with many interacting components.

The components themselves and client systems interfaces are primarily described in other

deliverables:

 Middleware in D05.2, together with D05.3

 Agent based components including QoS in D07.5A and D07.4

 Connection to command post (the Master) and mobile devices in D06.3

 The overall system architecture and service organization is described in deliverables

D04.2 and D04.3

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 8 of 45

The main part of the deliverable describes some typical integration cases in detail, outlining

how the BRIDGE platform can be reused and extended. There is also a section that describes

which tools and software components are available from the project and how to use them.

Finally there is also a section, section 4, dedicated to describe the parts of the BRIDGE platform

which have been published as open source in different public repositories. This section contain

links where to find the source code as well as other developer resources.

Note that this is not the final version of the deliverable but it will be extended and submitted

before the end of the project. The main addition that will be added is the example of creating

and extending BRIDGE platform with protocol transformations, see section 2.3. Additionally

the Open Source section 4 will be updated with additional components.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 9 of 45

2 Integrations
In order to describe some typical cases of integration with the BRIDGE platform we have

selected four cases which are based on actual integrations made within the project. The four

cases are:

 Publishing information and events on the BRIDGE platform

 Consuming information and events on the BRIDGE platform

 Creating a protocol transformation

 Enabling a service in the BRIDGE platform

The following subsections will describe these types of integrations.

2.1 Publishing information and events

This case is based on the integration of the Advanced Situational Awareness (ASA) concept

case in to the BRIDGE platform. The main goals for this integration is to link the information

generated by the ASA systems to be published on the BRIDGE network. The basic architecture

is shown in Figure 2.

BRIDGE network

Shared
Dataspace

ConsumerConsumer

Event with Link

ASA
WWW
Server

Event with link

BRIDGE ASA
Integration Service

ASA Software

Figure 2: Architecture of the ASA Integration

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 10 of 45

The output from the ASA system is stored in a file system that is part of a web server.

The main components in the architecture are:

 ASA Software: All the programs that produce information, i.e. Hexacopter, Expert

System and Modelling.

 WWW Server: A webserver provided by ASA to distribute information.

 BRIDGE ASA Integration Service: Will publish the available information in the ASA

WWW Server to the BRIDGE network.

The integration with the BRIDGE platform is done using the file system at the ASA server as

connection, i.e. all information transfer is using the file system as media.

An important concept when the ASA software publishes information is Metadata files. These

are XML files which contain extra information that describes the content files/streams that are

published on the ASA WWW Server. This is the information that the BRIDGE ASA Integration

Service will use to create the events that will be sent to the shared dataspace.

Since we do not want to send the actual information payload with the event the events will

contain links that can be used to retrieve the information when needed. The link format is

described in BRIDGE deliverable D05.2[1].

2.1.1 The BRIDGE ASA Integration Service

The BRIDGE ASA Integration Service (BAIS) was created as the glue in-between the BRIDGE

network and the ASA system. The implementation of BAIS is based on BRIDGE middleware

components.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 11 of 45

BRIDGE ASA Integration Service

Format TransformationsFormat Transformations

On-Site Storage

Network Manager

Service
Catalogue

ASA Integration Component ASA Server

Create BRIDGE Link

Look for new
metadata files

Publish event
Select transformation

BRIDGE Network

Figure 3: The BRIDGE ASA Integration Service Architecture

In Figure 3 the components in the BAIS which are blue colored are BRIDGE Middleware

components. The architecture of the BAIS contains the following components:

 ASA Integration Component: Contains all the integration specific bespoke

functionality. I.e. it contains the logic necessary to access the ASA server and retrieve

information. It will then use the BRIDGE Middleware components to enable the ASA

data to be published and consumed in the BRIDGE network.

 On-Site Storage: In this integration the On-Site storage is used for creating the BRIDGE

links that enables access to information such as images etc. over the BRIDGE network.

 Format Transformations: Provide transformations from the ASA internal formats to

BRIDGE network compatible formats, i.e. EDXL based formats.

 Network Manager and Service Catalogue: Enables communication with the BRIDGE

network.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 12 of 45

In the BRIDGE ASA Integration Service a number of integrations were implemented for the

different types of information that ASA to be published and made available on the BRIDGE

network:

 Advise: Output from the expert system

 Modelling data: Outputs from modelling, i.e. plume dispersion images et c.

 UAV Resource data: i.e. Position, status.

 UAV Static Images: Images captured by the UAV operator.

 UAV Video feeds: The feed from the video and IR cameras on the UAV.

We have selected to highlight two of these integrations in the next subsections to illustrate the

how these integrations were implemented. The two different cases represent the typical patterns

used in the ASA integration.

Modelling data

This is the output from the modelling, for instance toxic plume dispersion over time. Each

output contains files in jpg format of different resolutions to enable the consumer of the

information to select resolution depending on need, for instance bandwidth constraints or

display device resolution.

Listing 1: Metadata file for modelling data

Listing 1 shows an example of the Metadata file that accompanies modelling images. This file

contains additional information that is used for creating the BRIDGE event that is published.

The Metadata fields are:

 Description: Plain text describing the contents being published.

 TimeStamp: At what time was this model created.

 ModelTimeAfterIncident. Optional field that contains the number of seconds past from

the incident the contents depict.

 PostionContent: Upper left and lower right geo coordinates for the model. This is

useful to overlay the images on a map.

When the ASA Integration Service discovers this Metadata file it creates the BRIDGE link

using the On-Site Storage service and the finally selects an appropriate Format Transformation.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>
 <xsl:output method="xml" indent="yes"/>
 <xsl:param name="urlEnd" select="'?Description=Asa:Webserver'"/>

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 13 of 45

 <xsl:param name="messageGuid" select="'3F2504E0-4F89-41D3-9A0C-0305E82C3301'"/>
 <xsl:param name="webPath" select="'/CloudModels/'"/>
 <xsl:param name="urlStem" select="'http://127.0.0.1:8082/SOAPTunneling/0/0/'"/>
 <xsl:param name="fileName" select="'Test'"/>
 <xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z'"/>

 <xsl:template match="/">
 <EDXLDistribution xmlns='urn:oasis:names:tc:emergency:EDXL:DE:1.0'>
 <distributionID>
 <xsl:value-of select='$messageGuid'/>
 </distributionID>
 <senderID>ASA@bridgeproject.eu</senderID>
 <dateTimeSent>
 <xsl:value-of select='$timeNow'/>
 </dateTimeSent>
 <distributionStatus>Exercise</distributionStatus>
 <distributionType>Request</distributionType>
 <combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
 <language>EN</language>
 <contentObject>
 <contentDescription>MEXL-CloudModelUpdate</contentDescription>
 <contentKeyword>
 <valueListUrn>http://icnet.mitre.org/ValueLists/ContentKeywords</valueListUrn>
 <value>MEXL-CloudModelUpdate</value>
 </contentKeyword>
 <xmlContent>
 <embeddedXMLContent>
 <CloudModelUpdate xmlns='urn:BRIDGE:ASA'>
 <CloudRectangle xmlns=''>
 <TopLeft xmlns=''>
 <xsl:variable name ='firstCoord' select='substring-
before(substring(.//PositionContent,2),"[")' />
 <gml:Point xmlns:gml='http://www.opengis.net/gml'>
 <gml:pos>
 <xsl:value-of select='translate(substring-before($firstCoord,"]"),",","
")'/>
 </gml:pos>
 </gml:Point>
 </TopLeft>
 <LowerRight xmlns=''>
 <xsl:variable name ='secondCoord' select='substring-
after(substring(.//PositionContent,2),"[")' />
 <gml:Point xmlns:gml='http://www.opengis.net/gml'>
 <gml:pos>
 <xsl:value-of select='translate(substring-before($secondCoord,"]"),",","
")'/>
 </gml:pos>
 </gml:Point>
 </LowerRight>
 </CloudRectangle>
 <SituationObservation xmlns=''>
 <ObservationText>
 <xsl:value-of select='.//Description'/>
 </ObservationText>
 <ModelTimeAfterIncident>
 <xsl:value-of select='.//ModelTimeAfterIncident'/>
 </ModelTimeAfterIncident>
 <TimeStamp>
 <xsl:value-of select='.//TimeStamp'/>
 </TimeStamp>
 <xsl:copy-of select='bridge:Links' xmlns:bridge="urn:bridge:link"/>
 </SituationObservation>
 </CloudModelUpdate>
 </embeddedXMLContent>
 </xmlContent>
 </contentObject>

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 14 of 45

 </EDXLDistribution>
 </xsl:template>
</xsl:stylesheet>

Listing 2: Modelling data transformation.

Listing 2 shows the XSLT transformation that transforms the Modelling data with the BRIDGE

links into an EDXL based BRIDGE format that can be consumed on the BRIDGE network. It

can be noted that the transformation also does transformation of the actual data values, in this

case coordinates are transformed into GML based format.

<EDXLDistribution xmlns="urn:oasis:names:tc:emergency:EDXL:DE:1.0">
 <distributionID>3F2504E0-4F89-41D3-9A0C-0305E82C3301</distributionID>
 <senderID>ASA@bridgeproject.eu</senderID>
 <dateTimeSent>2015-04-01T22:23:12.573Z</dateTimeSent>
 <distributionStatus>Exercise</distributionStatus>
 <distributionType>Request</distributionType>
 <combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
 <language>EN</language>
 <contentObject>
 <contentDescription>MEXL-CloudModelUpdate</contentDescription>
 <contentKeyword>
 <valueListUrn>http://icnet.mitre.org/ValueLists/ContentKeywords</valueListUrn>
 <value>MEXL-CloudModelUpdate</value>
 </contentKeyword>
 <xmlContent>
 <embeddedXMLContent>
 <CloudModelUpdate xmlns="urn:BRIDGE:ASA">
 <CloudRectangle xmlns="">
 <TopLeft>
 <gml:Point xmlns:gml="http://www.opengis.net/gml">
 <gml:pos>18.9827839 69.7031209</gml:pos>
 </gml:Point>
 </TopLeft>
 <LowerRight>
 <gml:Point xmlns:gml="http://www.opengis.net/gml">
 <gml:pos>19.9827839 69.7031209</gml:pos>
 </gml:Point>
 </LowerRight>
 </CloudRectangle>
 <SituationObservation xmlns="">
 <ObservationText>Plume modelling output 30 minutes with wind change to SW 3 m/s
</ObservationText>
 <ModelTimeAfterIncident>1800</ModelTimeAfterIncident>
 <TimeStamp>2014-05-22T23:02:01.122Z</TimeStamp>
 <bridge:Links xmlns:bridge="urn:bridge:link">
 <bridge:Link description="Full resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testhigh.jpg?Description=Asa:We
bserver</bridge:Url>
 <bridge:Size>58937392</bridge:Size>
 <bridge:Mimetype>image/png</bridge:Mimetype>
 </bridge:Link>
 <bridge:Link description="Medium resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testmiddle.jpg?Description=Asa:
Webserver</bridge:Url>
 <bridge:Size>50883</bridge:Size>
 <bridge:Mimetype>image/png</bridge:Mimetype>
 </bridge:Link>
 <bridge:Link description="Small resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testlow.jpg?Description=Asa:Web
server</bridge:Url>
 <bridge:Size>3322</bridge:Size>

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 15 of 45

 <bridge:Mimetype>image/jpg</bridge:Mimetype>
 </bridge:Link>
 </bridge:Links>
 </SituationObservation>
 </CloudModelUpdate>
 </embeddedXMLContent>
 </xmlContent>
 </contentObject>
</EDXLDistribution>

Listing 3: Example of the final event format for Modelling data

Listing 3 shows the final result of the transformation wrapped in EDXL format. This data is

then forwarded to the BRIDGE network as an event using the Network Manager and the Service

Catalogue.

UAV Position

The UAV position and status is continuously updated every 3-5 seconds when the UAV is

active. Since this is very lightweight information only a Metadata file will be created and no

other data files.

<ASAMetaData>
 <!-- Description is Resource ID, i.e. the UAV identity-->
 <Description>UAV1</Description>
 <TimeStamp>2014-05-22T23:02:01.122Z</TimeStamp>
 <!--GPS coordinates For [x,y(,z)]... format-->
 <PositionContent>[18.9827839, 69.7031209, 120]</PositionContent>
</ASAMetaData>

Listing 4: UAV Position Metadata

Listing 4 shows an example of the Metadata file that accompanies the UAV position. This file

contains additional information that is used for creating the BRIDGE event that is published.

The Metadata fields are:

 Description: Resource ID, i.e. the UAV identity.

 TimeStamp: At what time the UAV position was recorded.

 PostionContent: The UAV position including height.

When the ASA Integration Service discovers this Metadata file it will immediately select the

appropriate Format Transformation. Since there is no additional data associated with the

Metadata there is no need to invoke the On-Site storage because all of the information will be

contained in the event that is published on the BRIDGE network.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>

 <xsl:output method="xml" indent="yes"/>
 <xsl:param name="messageGuid" select="'3F2504E0-4F89-41D3-9A0C-0305E82C3301'"/>
 <xsl:param name="fileName" select="'Test'"/>
 <xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z'"/>
 <xsl:template match="/">

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 16 of 45

 <ReportResourceDeploymentStatus xmlns="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg"
xmlns:rm="urn:oasis:names:tc:emergency:EDXL:RM:1.0" xmlns:geo-
oasis="urn:oasis:names:tc:emergency:EDXL:HAVE:1.0:geo-oasis"
xmlns:xal="urn:oasis:names:tc:ciq:xal:3" xmlns:xnl="urn:oasis:names:tc:ciq:xnl:3"
xmlns:xpil="urn:oasis:names:tc:ciq:xpil:3" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg EDXL-
RMReportResourceDeploymentStatus.xsd">
 <MessageContentType xmlns="">ReportResourceDeploymentStatus</MessageContentType>
 <MessageID xmlns="">
 <xsl:value-of select='$messageGuid'/>
 </MessageID>
 <SentDateTime xmlns="">
 <xsl:value-of select='$timeNow'/>
 </SentDateTime>
 <OriginatingMessageID xmlns="">001</OriginatingMessageID>
 <ContactInformation xmlns="">
 <ContactRole>Sender</ContactRole>
 </ContactInformation>
 <ResourceInformation xmlns="">
 <ResourceInfoElementID>1</ResourceInfoElementID>
 <Resource>
 <ResourceID>0ec33f9b-b8f1-44e2-99de-0a8dde04a68b</ResourceID>
 <Name>UAV</Name>
 <TypeStructure>
 <rm:Value>UAV</rm:Value>
 <rm:ValueListURN>urn:x-hazard:vocab:resourceTypes</rm:ValueListURN>
 </TypeStructure>
 <ResourceStatus>
 <DeploymentStatus>
 <rm:Value>Unknown</rm:Value>
 <rm:ValueListURN>urn:x-hazard:vocab:deploymentStatusTypes</rm:ValueListURN>
 </DeploymentStatus>
 </ResourceStatus>
 </Resource>
 <ScheduleInformation>
 <ScheduleType>Current</ScheduleType>
 <Location>
 <rm:TargetArea>
 <xsl:variable name ='firstCoord' select='substring-
before(substring(.//PositionContent,2),"]")' />
 <gml:Point>
 <gml:pos>
 <xsl:value-of select='translate($firstCoord,","," ")'/>
 </gml:pos>
 </gml:Point>
 </rm:TargetArea>
 </Location>
 </ScheduleInformation>
 </ResourceInformation>
 </ReportResourceDeploymentStatus>
 </xsl:template>
</xsl:stylesheet>

Listing 5: The UAV position transformation

Listing 5 shows the transformation that is used for creating the BRIDGE event from UAV

position Metadata. In this case it creates an EDXL-RM formatted message.

<ReportResourceDeploymentStatus xsi:schemaLocation="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg
EDXL-RMReportResourceDeploymentStatus.xsd" xmlns="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg"
xmlns:rm="urn:oasis:names:tc:emergency:EDXL:RM:1.0" xmlns:geo-
oasis="urn:oasis:names:tc:emergency:EDXL:HAVE:1.0:geo-oasis"
xmlns:xal="urn:oasis:names:tc:ciq:xal:3" xmlns:xnl="urn:oasis:names:tc:ciq:xnl:3"

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 17 of 45

xmlns:xpil="urn:oasis:names:tc:ciq:xpil:3" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <MessageContentType xmlns="">ReportResourceDeploymentStatus</MessageContentType>
 <MessageID xmlns="">3F2504E0-4F89-41D3-9A0C-0305E82C3301</MessageID>
 <SentDateTime xmlns="">2015-04-11T22:23:12.573Z</SentDateTime>
 <OriginatingMessageID xmlns="">001</OriginatingMessageID>
 <ContactInformation xmlns="">
 <ContactRole>Sender</ContactRole>
 </ContactInformation>
 <ResourceInformation xmlns="">
 <ResourceInfoElementID>1</ResourceInfoElementID>
 <Resource>
 <ResourceID>0ec33f9b-b8f1-44e2-99de-0a8dde04a68b</ResourceID>
 <Name>UAV</Name>
 <TypeStructure>
 <rm:Value>UAV</rm:Value>
 <rm:ValueListURN>urn:x-hazard:vocab:resourceTypes</rm:ValueListURN>
 </TypeStructure>
 <ResourceStatus>
 <DeploymentStatus>
 <rm:Value>Unknown</rm:Value>
 <rm:ValueListURN>urn:x-hazard:vocab:deploymentStatusTypes</rm:ValueListURN>
 </DeploymentStatus>
 </ResourceStatus>
 </Resource>
 <ScheduleInformation>
 <ScheduleType>Current</ScheduleType>
 <Location>
 <rm:TargetArea>
 <gml:Point>
 <gml:pos>18.9827839 69.7031209 120</gml:pos>
 </gml:Point>
 </rm:TargetArea>
 </Location>
 </ScheduleInformation>
 </ResourceInformation>
</ReportResourceDeploymentStatus>

Listing 6: The EDXL-RM message that is created from UAV position Metadata

Listing 6 shows the final result of the transformation wrapped in EDXL-RM format. This data is

then forwarded to the BRIDGE network as an event using the Network Manager and the Service

Catalogue.

2.2 Consuming information and events

This case is based on the actual integration of the WISE system in the BRIDGE platform. The

basic functionality of the integration is to allow WISE to eavesdrop on events and data being

processed on the BRIDGE network.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 18 of 45

BRIDGE network

Shared
Dataspace

Shared
Storage

Events

BRIDGE WISE
Integration

Service
WISE

Figure 4: WISE integration architecture

Figure 4 shows the WISE integration architecture with the connection to the WISE system. The

method of communicating with WISE is through a shared storage, i.e. the BRIDGE WISE

Integration Service writes events to the shared storage and the WISE system reads the events.

The WISE system has no need to interact with the BRIDGE network except for receiving events

so the integration is unidirectional.

2.2.1 The BRIDGE WISE Integration Service

The BBRIDGE WISE Integration Service acts as the glue for the WISE system to part of the

BRIDGE network. The service itself is built out both BRIDGE Middleware components and

BRIDGE software classes.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 19 of 45

BRIDGE WISE Integration Service

Subscription Manager

SharedDataspace Client

Event Receiver

HTTP Server

Integration Main

Start/stop subscribe Start/Stop event handling

Subscription Request Events

Events

Network Manager

Service
Catalogue

Register server

VA

Figure 5: BRIDGE WISE Integration Service architecture

Figure 5 shows the different components of the BRIDGE WISE Integration Services. The blue

coloured components are part of the BRIDGE Middleware services, the green coloured

components are part of the BRIDGE class library and the white components are bespoke to the

integration.

The difference between the BRIDGE Middleware Services and the BRIDGE class library is that

the Middleware Services run as separate components whilst the BRIDGE Middleware classes

are used as class library, i.e. they become part of the executable. The BRIDGE Middleware

classes are reusable components that can be used by any service or component.

The components in Figure 5 are

 Integration Main: Starts and stop the subscriptions and events listening.

 Subscription Manager: Takes care of which subscriptions should be made.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 20 of 45

 Event Receiver: Manages the received events and forwards them to shared storage. It

also controls the HTTP Server that is the entry point for events.

 Shared Dataspace Client: Exposes the shared dataspace services in the BRIDGE

network, hiding the communication complexity when interacting with the shared

dataspace.

 HTTP Server: Is a generic class that implements an HTTP server which in this case is

used to receive the events from the BRIDGE network.

 Network Manager and Service Catalogue: Enables communication with the BRIDGE

network.

In the following subsections we will describe how to create an event listener and to manage

subscriptions using the BRIDGE classes using both descriptions and actual code listings.

Setting up an event listener

The HTTP Server class provides the necessary functionality to create and run a BRIDGE

network enabled event listener. Some BRIDGE Middleware services use this class in their own

implementation, such as the On-Site Storage Service.

The API provided by the HTTP Server class is simple and straightforward with the following

public methods and properties:

 HTTPServer (string listenerPrefix, bool registerInServiceCatalogue, Parts[]

Registration) Initializes a new instance of the HTTPServer class.

 event EventHandler< HttpRequestEventArgs > IncomingRequest = null

 Callback function for incoming HTTP requests.

 virtual void Start ():

Starts this instance.

 virtual void Stop ()

Stops this instance.

 State RunState [get]

Gets the state of the HTTP Server.

 VirtualAddress virtualAddress [get]

Gets the virtual address.

 virtual Uri Url [get, set]

Gets the URL for the HTTP server.

Using the HTTPServer class involves the following steps:

 Define a callback for incoming HTTP requests, this is where the actual processing of the

request is done.

 Create the HTTPServer providing which endpoint it will listen to, for instance

http://127.0.0.1:88/, if it should be registered in the service catalogue and finally the

service catalogue information.

http://127.0.0.1:88/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 21 of 45

 Start the HTTP server.

The following listing provides an example of the necessary code implementing the described

steps.

ServiceCatalogue.VirtualAddress _VirtualAddress = null;
HTTPServer listener = null;

private bool SetupEventListenerAndRegisterToBRIDGENetwork()
{
 ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[2];

 ServiceCatalogue.Part a = new ServiceCatalogue.Part();
 a.key = "DESCRIPTION";
 a.value = "TEST_BRIDGE_listener";
 parts[0] = a;

 a = new NetworkManager.NetworkManager20WebReference.Part();
 a.key = "SID";
 a.value = "urn:BRIDGE:event-listener";
 parts[1] = a;
 //Create the HTTPServer
 listener = new HTTPServer("http://127.0.0.1:88/, true, parts);
 _VirtualAddress = listener.virtualAddress;
 //Set up the Callback for HTTP requests
 listener.IncomingRequest += (WebServer_IncomingRequest);
 listener.Start();
}

/// <summary>
/// Handles the IncomingRequest event of the HTTPServer control.
/// </summary>
/// <param name="sender">The source of the event.</param>
/// <param name="e">The <see cref="HttpRequestEventArgs"/> instance containing
the event data.</param>
protected void WebServer_IncomingRequest(object sender, HttpRequestEventArgs e)
{
 HttpListenerResponse response = e.RequestContext.Response;
 HttpListenerRequest request = e.RequestContext.Request;
 //Create an StreamReader for the Payload
 var streamReader = new StreamReader(request.InputStream);
 try
 {
 if (!streamReader.EndOfStream)
 {
 //Process the request and payload
 }
 //Return OK to the caller
 string responseString = String.Empty;
 byte[] buffer = Encoding.UTF8.GetBytes(responseString);
 response.StatusCode = (int)HttpStatusCode.OK;
 response.StatusDescription = "OK";
 response.ContentLength64 = buffer.Length;
 response.ContentEncoding = Encoding.UTF8;

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 22 of 45

 response.OutputStream.Write(buffer, 0, buffer.Length);
 response.OutputStream.Close();
 response.Close();
 return;
 }
 catch (Exception ex)
 {
 System.Console.WriteLine("error:" + ex.Message);
 }
}

Listing 7: Setting up an event listener in C# with HTTPServer

In Listing 7 the method SetupEventListenerAndRegisterToBRIDGENetwork creates the

HTTPServer instance using the adding the DESCRIPTION=TEST_BRIDGE_listener and SID=

urn:BRIDGE:event-listener to the Service Catalogue. The method

WebServer_IncomingRequest is the place where HTTP calls will be processed.

Creating a subscription using the SharedDataspace Client class.

The SharedDataspace Client class encapsulates the functionality of the Shared Dataspace

Service and extends it to include the functionality of finding the Shared Dataspace Service in

the BRIDGE network using the Service Catalogue.

The API for the Shared Dataspace has the following functions:

 SharedDataspaceClient (Part[] SharedDataspaceServiceCatalogueQuery)

Initializes a new instance of the SharedDataspaceClient class and it will connect to

the Shared Dataspace Service that will match the

SharedDataspaceServiceCatalogueQuery in the Service Catalogue.

 bool publish (System.String topic, System.String contentType, System.String metadata,

System.String payLoad, string persist, string itemId)

Publishes the specified payload on the topic.

 string query (System.String topic, System.String filter)

Queries the specified topic.

 void subscribe (string topic, string filter, string VirtualAddress)

Subscribes to the specified topic.

 string subscribeWithServiceFilter (string topic, string filter, string VirtualAddress)

Subscribes to the Topic the with service filter.

 void Remove (System.String Topic, System.String ItemId)

Removes the specified item in the topic.

 void UnSubscribe (string subscriptionId)

Unsubscribe.

 string ListSubscriptions ()

Lists all the subscriptions in the shared data space.

The only real difference in-between the Shared Dataspace Service and the SharedDataspace

Client class is the constructor. The constructor takes a Service Catalogue query as a parameter.

This query will be used to determine which of the Shared Dataspace Services on the BRIDGE

network that will be invoked when using the Shared Dataspace Client.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 23 of 45

The following listing will show how the Shared Dataspace Client can be used in order to make a

subscription to a specific topics.

public void SetUpMySubScription(VirtualAddress VA)
{
 //Create Query
 Part[] parts = new Part[1];
 Part a = new Part();
 a.key = "DESCRIPTION";
 a.value = "S2D2sCNet:StaticWS";
 parts[0] = a;

 SharedDataspaceClient sdc = new SharedDataspaceClient(parts);

 //Subscribe
 sdc.subscribe("App.global.ResourceStatus", "", VA.asString);
}

Listing 8: Creating a subscription in C# with SharedDataspace Client

In Listing 8 describes how an subscription is created in the Shared Dataspace Service with the

description “S2D2sCNet:StaticWS” for the topic “App.global.ResourceStatus”. Note that the

Virtual Address of the event listener should be provided as parameter.

2.3 Creating a protocol transformation

In the final version of the deliverable this will show how to extend the BRIDGE platform with a

new protocol transformation. The example will show how the platform is extended to support

CONTINUA based standards and formats http://www.continuaalliance.org/ enabling different

medical devices to be connected to the BRIDGE platform.

2.4 Enabling a service in the BRIDGE platform

There are three main ways of enabling a service in the BRIDGE platform, i.e. making a service

available and accessible on the BRIDGE network:

 Creating a proxy that communicates with service using the IoTResource Builder.

 Incorporating the code generated by the IoTResource Builder into the service.

 Enabling the service using the available BRIDGE Middleware services.

The two first options involving the IoTResource Builder are the easiest way to enable the

service in the BRIDGE network. The code stubs generated already contain the code for

registering the service in the Service Catalogue and it has automatically produced the service

description that will be part of the IoTResource Catalogue. The usage of the tools is described in

section 3.1.

Therefore this section will deal with what is necessary for the third option where the service is

enabled by using the BRIDGE Middleware services. The integration with the BRIDGE system

and network can be done at different depths depending on ambition level and need. The simple

one where the service is discoverable and can be invoked using the BRIDGE network but the

caller must now what the service and its API beforehand. The fully enabled one where the

http://www.continuaalliance.org/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 24 of 45

service provides additional metadata describing the service, its methods etc. that makes it

possible to dynamically determine what the service does and its API.

The two following sub section will detail how a service can be BRIDGE network enabled by

using the BRIDGE Middleware services. In order to understand the process please look at the

deliverable D05.2 that describes the inner working of the BRIDGE network.

2.4.1 Enabling a service on the BRIDGE network

In order to register a service on the BRIDGE network the service endpoints must be known. The

endpoint is the URL where the service can be accessed by a client application. The service can

have multiple endpoints, for example in order to make it available using different protocols, for

instance one for REST and one for Web Service protocols. Each of the services endpoints needs

to be registered individually in the Network Manager Service Catalogue

The process is repeated for each endpoint according to these steps:

 Create the meta description for the endpoint. This is a list of key value pairs with

properties. Two values are compulsory in all registrations: DESCRIPTION that

describes the endpoint, for instance S2D2sCNet:REST; SID The service identity, for

instance urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1, this attribute describes

which interface/service is implemented.

 Make a registration call to the local BRIDGE Network Manager to register the service

endpoint. Note that the supplied endpoint must be accessible for the Network

Manager to reach, otherwise the service can never be called.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 25 of 45

Listing 9: Example of registering a service endpoint in C#

Listing 9 shows the steps in code where m_wsendpoint contains the endpoint for the service.

The SID (service identity) can be common for many services in the BRIDGE network when

they implement the same service interface (API). When this registration is done the service and

its endpoint is available to the whole BRIDGE network.

//Connect to the Service Catalogue
ServiceCatalogue.NetworkManager sc = new ServiceCatalogue.NetworkManager();
//Using the local network manager
sc.Url = "http://localhost:9090/cxf/services/NetworkManager";

//Using the local network manager
ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[5];
ServiceCatalogue.Part p = new ServiceCatalogue.Part();
//Create the DESCRIPTION (Mandatory key)
p.key = "DESCRIPTION";
p.value = "S2D2SDevice:StaticWS";
parts[0] = p;

//Create the SID (Mandatory key), Service ID
p = new ServiceCatalogue.Part();
p.key = "SID";
p.value = "urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1";
parts[1] = p;

//Create the PID (Optional key), Persistent ID. Needs to be a unique name on
the BRIDGE network.
p = new ServiceCatalogue.Part();
p.key = "PID";
p.value = "my unique id";
parts[2] = p;

//Examples of additional keys
p = new ServiceCatalogue.Part();
p.key = "HOST_NAME";
p.value = Environment.MachineName;
parts[3] = p;

p = new ServiceCatalogue.Part();
p.key = "START_TIME";
p.value = DateTime.Now.ToString(); ;
parts[4] = p;

//Make the registration
ServiceCatalogue.Registration rid = sc.registerService(parts, m_wsendpoint,
"eu.linksmart.network.grand.impl.GrandMessageHandlerImpl");

HID = rid.virtualAddressAsString;
System.Console.WriteLine("Virtual Address:" + HID);

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 26 of 45

2.4.2 Registering Service Metadata in the IoTResource Catalogue

Using the IoTResource Builder services automatically register to the IoT Resource Catalogue by

using the standard UPnP discovery mechanism. This section will describe how to register the

Service Metadata using BRIDGE middleware service invocations in code.

The actual call to register the services is simple but some extra functionality must be

implemented in order for the service to be properly registered. This requires a small

understanding on how the SCPD works in relation with UPnP and how the IoTResource

Catalogue deals with service descriptions.

IoTResource Catalogue Enabled Service

UPnP device document

Service1 SCPD Service2 SCPD Document

IotResource Catalogue

Manual registration

Retrieve SCPDRetrieve SCPD

Figure 6: Manual IoTResource Catalogue registration

Figure 6 shows how the IoTResource Catalogue finds services manually, the steps are as

follows:

 First the service makes a manual registration of the services it provides, this

registration contain links to SCPD files decribing each of the individual services.

 The IoTResource Catalogue retrieves the description of the services and adds them to

the catalogue.

This means that the service must be able to publish the SCPD files for HTTP based retrieval.

This can be done by using any HTTP-based Web Server that can be accessed from the

IoTResource Catalogue.

The UPnP Device document that is provided for the manual registration is a standard UPnP

device document.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 27 of 45

<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:IoTresource:testservice:1</deviceType>
 <friendlyName>TestService</friendlyName>
 <manufacturer>BRIDGE</manufacturer>
 <modelName>Test</modelName>
 <modelNumber>1</modelNumber>
 <UDN>uuid:15696574-1a4d-42e0-8907-bee3e110e2f1</UDN>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:testservice:1</serviceType>
 <serviceId>urn:serviceId:testservice:1</serviceId>
 <SCPDURL>http://127:0.0.1:7237/serviceId-testservice-1_scpd.xml</SCPDURL>
 </service>
 </serviceList>
 </device>
</root>

Listing 10: Example of XML document used to register service

Listing 10 shows a simple example device document that is used to register a service. In this

example only one service is provided “urn:serviceId:testservice:1”, but mor eservices can be

added to the serviceList. The most important parts that need to be eneterd correctly in the

document are:

 friendlyName: This is the name that service will have in different service browser

 serviceId: Should have the same content as the SID used to register in the Network

Manager Service Catalogue

 SCPDURL: This is the link to the SCPD document describing the service, this URL must

be accesible for the IoTResource Catalogue.

The SCPD document for the service needs to be manually created using an XML editor, the

actual syntax and also links to some tools can be found at the UPnP forum web site

http://www.upnp.org/. A very simple example of an SCPD document is shown in Listing 11.

<?xml version="1.0" encoding="utf-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>TestMethod</name>
 <argumentList>
 <argument>
 <name>testInput</name>
 <direction>in</direction>

http://www.upnp.org/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 28 of 45

 <relatedStateVariable>Test</relatedStateVariable>
 </argument>
 <argument>
 <name>testResponse</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>Result</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>Test</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>Result</name>
 <dataType>boolean</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

Listing 11: Example SCPD

The example SCPD can be extended with the service annotations described in section 3.1.1 to

add further meta data to the service.

Finally we show the code necessary to register the service in the IoTResource Catalogue using

the BRIDGE Middleware API.

public void RegisterService()
{
 XmlDocument xDeviceDocument = new XmlDocument();
 xDeviceDocument.Load("mydeviceDocument.xml");

 IoTResourceCatalogue.ApplicationDeviceManager

IoTResCat = new IoTResourceCatalogue.ApplicationDeviceManager();

 IoTResCat.AddDevice(xDeviceDocument.InnerXml /*xml as string*/);

}

Listing 12: Manual Service Registration in the IoTResource Catalogue

As shown in Listing 12 the actual call to make the registration is simple but the complexity lies

in the creation of the SCPD files and to make sure that the description matches the actual

implementation. Therefore we recommend the usage of the IoTResource Builder tool when

creating or enabling services on the BRIDGE network because the SCPD and registration

information will be created by the tool.

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 29 of 45

3 Development Tools

3.1 IoTResource Builder and service annotations

The BRIDGE middleware provides access to the set of ICT resources in an emergency system

context, such as different sensing devices, data repositories, social media streams, UAVs etc.

The middleware service layer provides client applications uniform access to all such resources

(below referred to as IoTResources, which is the LinkSmart resource concept).

The IoTResource Builder allows a developer to define IoTResources and automatically generate

the necessary IoTResource code stubs. Services can then be built using these IoTResources. The

IoTResources will also automatically register themselves in both the Network Manager Service

Catalogue as well as the IoTResource Catalogue.

Complete description, tutorials and download of the IoTResource Builder are available at:

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-

builder/

3.1.1 Service annotations

In order to facilitate the use of BRIDGE services both in run-time and in design time, the

platform supports the annotation of both services and resources. Annotations in this context

means the possibility to associate various semantic descriptions to IoTResources via their

service access points.

The annotations can be made searchable for developers as an aid in service development. They

can also be used to facilitate the resource discovery processes, and service matching for

potential application clients. The annotations are included in the service definitions, which are

used as input to the code generation process, which creates program stubs for IoTResources

There are different levels of service annotations.

 Service Summary, a description of the overall function of a service, including

references to standards or other external sources.

 Service Actions. Each service has one or more actions (operation /methods). Each

action implements some sensing or actuation function. Annotations include action

purpose, and arguments and results.

 Property Level (state variables). The arguments and results, the state variables, can

also be described in more detail, including their value sets and references to

standards.

 Effect annotations. Actions can also be annotated with a list of possible effects they

might have in the applications context, or more specifically on other state variables. As

an example, turning off a fan might cause a temperature raise, and perhaps also a

decrease in energy consumption.

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 30 of 45

There are numerous approaches to service description frameworks. The service description tool

does not impose the use of any specific service annotation standard, but rather encourages the

referencing to domain specific standards, controlled vocabularies (or ontologies), in the

annotations of the service semantics, e.g., emergency messaging data set standards like EDXL.

From a structural and syntactical view, the service description is based on the UPnP
2
 device

descriptions and the SCPD format, and USDL
3
.

3.1.2 Use of The resource builder

The IoTResource Builder allows you to define your IoTResources and automatically generate

the necessary IoTResource code stubs. Services can then be built using these IoTResources.

The following sections give examples of how a service can be described using the Resource

Builder tool.

Service Summary

This service will mapped to an IoTResource which monitors in-door air quality, using a CO2

Sensing device in conference room. We start by providing the overall description, the Service

Summary.

2
 http://www.upnp.org/

3
 Unified Service Description Language, http://linked-usdl.org/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 31 of 45

Figure 7: Service Summary description using the IoTResource Builder

The annotations are encoded in an XML vocabulary which will be associated to the

IoTResource in the code generation process (see below).

The Service Summary description is shown in its corresponding XML encoding below.

<serviceAnnotations xmlns="IoT">
<name>Indoor Air Quality Service</name>
<version>1</version>
<date>2015-02-23</date>
<shortDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the
air quality in terms of the CO2 levels. Service built on output from the
CO2 detection sensor LC-WRF04 CO2 (manufactured byThermokon, Germany)

</shortDescription>
<longDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the air
quality in temrs of the CO2 levels. The service provides two alternative
measures of air quality,
- a numerical value in ppm (parts pper million) CO2

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 32 of 45

- as a ppm value range (IDA1 - IDA4) which indicates air quality as: High (
&lt; 400 ppm), Mediim (400-600 ppm), Moderate (600-1000) ppm, Low
(&gt; 1000 ppm).

Device technical details:
Output voltage 1x 0..100000 V (V), 1x 0..10 V (V) (Kopie)
Measuring of , V: CO2
Power consumption max. 3 W / 6 VA
Measuring range CO2 0..2000 ppm
Measuring range temperature depends on used sensor (passive)
Accuracy CO2 ±75 ppm oder 10% vom Messwert (bei 21 °C)
See reference for further device details

</longDescription>
 <referenceUrl>

http://www.thermokon.de/en/products/air-quality/co2/lc-wrf04-co2.html
</referenceUrl>

</serviceAnnotations>

Figure 8: Service Summary XML

Actions

Each action (similar to operations/methods) of a service may also have their own annotations

specified. This example shows an action for reporting the air quality in ppm (parts per million)

CO2 based on a standard for indoor air quality (IDA
4
).

Figure 9: Action annotation

4 http://www.aafeurope.com/en/155/en13779-standard

http://www.thermokon.de/en/products/air-quality/co2/lc-wrf04-co2.html

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 33 of 45

The corresponding XML follows. It also contains two additional actions for the service.

<actionmetadata xmlns="IoT">
<actionList>

<action name="GetIndoorAirQuality">
<description>

Reports indoor air quality expressed in IDA, see reference to
standard.

</description>
<referenceUrl>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&
;cs=1B50EAC84642115F35A7D9F005762E46B

</referenceUrl>
<effects>

 No effects reported
</effects>

</action>
<action name="GetCO2Level">

<description>
Reports indoor air quality expressed as level of CO2 in ppm

</description>
 <referenceUrl></referenceUrl>
<effects>

<effect>
<stateVariable></stateVariable>
<description>text explaining possible effect</description>
<referenceUrl></referenceUrl>

</effect>
</effects>

</action>
<action name="TurnOffCO2Sensor">

<description>
Turns off the CO2 Sensor Device and returns the current CO2Level

</description>
<referenceUrl></referenceUrl>
<effects>

<effect>
<stateVariable></stateVariable>
<description>

Device is turned off. Last measurement accessible in log.
</description>
<referenceUrl></referenceUrl>

</effect>
</effects>

</action>
</actionList>

</actionmetadata>

Figure 10: Action annotation XML

As mentioned above, it also possible to describe any additional effects an action might have.

Note that these “effects” are not to be seen as hard dependencies between actions/ state

variables maintained by the service run-time, but rather as a way to document possible effects in

the application context.

In the example above (TurnOffCO2Sensor), the “effect” simply states that at (power) turn off,

the last measured value is available as an IoTObservation from logged data.

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 34 of 45

Properties (State Variables)

The inputs/outputs of a service are represented by state variables associated with each of the

actions. The Air quality action above reports measurements to be interpreted according to a

standard for in-door air quality using intervals of ppm ranges.

Figure 11: State variable annotation

The corresponding XML encoding for this State variable annotation is shown below.

<statevariablemetadata xmlns="IoT">

<statevariableList>
<statevariable name="airQuality">

<IoTEvent>true</IoTEvent>
 <!—checkbox Event: Generates IoT event when state changes -->
<IoTStored>true</IoTStored>
<!-- checkbox Logged:Store state changes automatically using storage
manager -->
<IoTUoM>IDA</IoTUoM>

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 35 of 45

<!-- Valueset? - Unit of Measurement C, cm, kg....etc -->
<description>

Indoor air (IDA) quality in PPM invervals according to the EN13779
standard
</description>
<referenceUrl>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=
1B50EAC84642115F35A7D9F005762E46B
</referenceUrl>
<valueset>

<entry>
<value>IDA4</value>
<description>(Low) CO2Level more than 1000 PPM</description>

</entry>
<entry>

<value>IDA3</value>
<description>(Moderate) CO2Level btw 600-1000</description>

</entry>
<entry>

<value>IDA2</value>
<description>(Medium) CO2Level btw 400-600 PPM</description>

</entry>
<entry>

<value>IDA1</value>
<description>(High) CO2Level less than 400 PPM</description>

</entry>
</valueset>
<vsReferenceUrl></vsReferenceUrl>

</statevariable>

Additional variables here….
</statevariableList>

</statevariablemetadata>

Figure 12: Annotations for State Variables

3.1.3 Components in the IoTResource Builder

The IoTResource Builder is built on two separate components, see Figure 13:

 The IoTResource Builder GUI

 The IoT Code Generator

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 36 of 45

IoT Resource Builder

IoT Resource Builder GUI

IoT Code Generator

Code Generationg XSLTsCode Generationg XSLTs

Project with ready made codeProject with ready made code

IoT Resource Description XMLIoT Resource Description XML

Figure 13: IoTResource Builder Components

The IoTResource Builder GUI creates an IoTResource Description XML which is then sent to

the IoT Code Generator to create the code. The reason for this division is to make the IoT Code

Generator reusable for other tools, for instance the GUI could be replaced by a completely web

based interface but still using the same code generation.

The IoTResource Description XML is based on the UPnP device XML but with some small

differences. Firstly the IoTResources service description (SCPD) is in lined in the Device XML.

Secondly there is an envelope which carries some code generation meta data, see Figure 14.

<device>
 <deviceType>urn:schemas-upnp-org:IoTresource:CO2Sensor:1</deviceType>
 <friendlyName>CO2Sensor</friendlyName>
 <manufacturer>LinkSmart Open Source</manufacturer>

<manufacturerURL>

http://www.iotworldservices.com/wiki/iotworldserviceswiki/

</manufacturerURL>
 <modelDescription>

CO2Sensor UPnP Device Using Auto-Generated UPnP Stack
</modelDescription>

 <modelName>CO2Sensor Device</modelName>
 <modelNumber>X1</modelNumber>

http://www.iotworldservices.com/wiki/iotworldserviceswiki/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 37 of 45

 <productCode>CO2Sensor-X1</productCode>
 <serviceList>
 <service>
 <serviceName>CO2SensorProject</serviceName>
 <serviceType>urn:schemas-upnp-org:service:CO2Sensor::1</serviceType>
 <serviceId>urn:upnp-org:serviceId:CO2Sensor</serviceId>
 <SCPD>
 <specVersion xmlns="urn:schemas-upnp-org:service-1-0">
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList xmlns="urn:schemas-upnp-org:service-1-0">
 <action>
 <name>GetCO2Level</name>
 <argumentList>
 <argument>
 <name>CO2Level</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>CO2Level</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>GetIndoorAirQuality</name>
 <argumentList>
 <argument>
 <name>airQuality</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>airQuality</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 <action>
 <name>TurnOffCO2Sensor</name>
 <argumentList>
 <argument>
 <name>CO2Level</name>
 <direction>in</direction>
 <relatedStateVariable>CO2Level</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable xmlns="urn:schemas-upnp-org:service-1-0">
 <stateVariable sendEvents="no">
 <name>_IoTActionMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>
 <?xml version="1.0" encoding="utf-8"?>

<actionmetadata xmlns="IoT">
<actionList>

</actionList>

Actions Annotations

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 38 of 45

</actionmetadata>

 </defaultValue>

 </stateVariable>
 <stateVariable sendEvents="no">
 <name>CO2Level</name>
 <dataType>i2</dataType>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>_IoTResourceMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>

<serviceAnnotations>

</serviceAnnotations>
 </defaultValue>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>_IoTStateVariableMetaData_</name>
 <dataType>string</dataType>
 <defaultValue>
 <?xml version="1.0" encoding="utf-8"?>
 <statevariablemetadata xmlns="IoT">
 <statevariableList>

 </statevariable>
 </statevariableList>
 </statevariablemetadata>
 </defaultValue>
 </stateVariable>
 <stateVariable sendEvents="no">
 <name>airQuality</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
 </SCPD>
 </service>
 </serviceList>
 </device>
 </root>
 </upnp>
</DeviceInfo>

Figure 14: Example of an IoTResource Description XML. Coloured rectangles represent the

annotation sections.

State Variables
annotations

Service Summary
annotation

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 39 of 45

There are four specific tags in the Environment section that controls the code generation:

 CodeNameSpace: The namespace used for the code generated, usage depends on

target language.

 ProjectName: The name used for the resulting code project.

 ClassName: Class name stem used for the generated classes for the IoTResource.

 IoTResourceType: Decides which type IoTResource code is generated, current possible

values are IoTDevice, IoTService and IoTThing.

The actual code generation is performed by using XSLT transformations using the IoTResource

Description XML as input. The set of XSLT transformation
5
 create the output files that are part

of the resulting development project solution.

Figure 15: Development environment generated

Initially C# Visual Studio projects are supported as target environment. However, with the use

of XSLT this can be easily extended to support other languages such as java, swagger.

5
 See LinkSmart code repository https://linksmart.eu/redmine/

https://linksmart.eu/redmine/

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 40 of 45

3.2 IoTResource Catalogue

The IoTResource Catalogue discovers and keeps track of available IoTResources in the network

and their service descriptions. It provides a REST and Web Service based interface to select and

retrieve data about the IoTResources and their services.

As an example see Figure 16 below that shows which IoTResources have been discovered on

the gateway ”KURSAAL”, which handles several physical gateways (KURSAAL,

ELO2,CLEMONS) and which IoT Services they offer. IoTResources are discovered and

managed by the IoT Resource Catalogue.

Figure 16: IoT Resource Catalogue

3.2.1 Catalogue Services and Actions

The IoTResource Catalogue offers a number of services which can be listed using the following

REST-expression:

 http://<catalogueendpoint>/services.

If you type this into a browser the result will be:

http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 41 of 45

Figure 17: Catalogue Services

Each service provides a number of actions that can be performed on the IoTResource. The

catalogue service provides the main functionality of the IoTResource Catalogue. You can list all

actions provided by a service with the following REST-expression:

http://<catalogueendpoint>/services/actions

The returned XML specifies the action and the arguments needed to call it:

Figure 18: Result of Resource Catalogue Query

http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueservices.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueactions.png

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 42 of 45

Below is a short explanation of all available actions:

GetAllGateways
Returns all gateways known by the catalogue

GetErrorIoTResources
Returns all IoTResources that are in an error state, for instance that have disappeared from the

network without telling about it

GetIoTResource
Argument: resourceId

Returns the SCPD for a specified IoT Resource

GetIoTResourcesAtGateway
Argument: gateway ID

Returns the SCPD file for all IoT Resources at a specified gateway

GetIoTResourcesEndpoints
Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by

the catalogue

GetIoTResourcesEndpointsFromXpath
Argument: Xpath expression

Returns the IotResourceId, FriendlyName and the localendpoint for all IoTResources known by

the catalogue that matches the xpath description

GetIoTResourcesFromXpath
Argument: Xpath expression

Returns the SCPD file for all IoTResources known by the catalogue that matches the xpath

description

RegisterResource
Register an IoTResource directly not using UPnPDiscovery.

GetManualIoTResources
Returns all IoTResources that has registered themselves and not through UPnP

GetNumberOfIoTResources
Returns the number of IoTResources, UPnPDevices, ErrorResources

RemoveErrorIoTResources
Instructs the catalogue to release and forget about the IoTResources that are currently in the

error list

ReScan
Instructs the catalogue to issue a new M-SEARCH command to find new IoTResources in the

network

ReStartCatalogue
Instructs the catalogue to forget about all IoTResources and ErrorResources and issue a ReScan

command

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 43 of 45

3.3 IoTResource Catalogue Browser.

IoT Resource Catalogue Browser provides a user interface to look and interact with IoT

resources in the network node. Basically it provides a user interface to the IoT Resource

Catalogue. The IoT Resource Catalogue Browser can be used for looking at the service

descriptions and also to invoke actions in the service (If the service supports this)

Complete description examples and downloads of the IoT Resource Catalogue Browsers are

available at: http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-

browsers/.

 When you double click on the executable it browser will first discover the IoTResource

Catalogue in your local network. If you click on the catalogue name in the tree, you will see

three tabs to the right. The first tab shows you the number of IoTResources this catalogue has

discovered.

Figure 19: Initial Windows IoT Resource browser window

The second tab shows the IoTResourceIds and the endpoints to the different IoTResources. In

case there are IoTResources which are in some error state and therefore cannot be accessed,

they will be listed in the third tab.

Figure 20: Second Tab with IoT Resources end points

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser1.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser2.png

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 44 of 45

You can now expand the tree on the left. The gateway nodes correspond to different hardware

gateways (normally computers) in your network which hosts the IoTResources. If you click on

one IoTResource, you will see three tabs to the right. The first tab (IoT) lists the state

variables/properties that are specific for LinkSmart.

Figure 21: Expanded view

http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

Version 0.6: Draft 11.05.2015

D08.2: Integrated and Quality Assured BRIDGE platform Page 45 of 45

4 Components in Open Source Public Repositories
This section will be extended in the final version since many components are still in the process

of being made available.

4.1 LinkSmart

Many of the LinkSmart extensions made in BRIDGE are already incorporated in the Open

Source release available at https://linksmart.eu/redmine/projects/linksmart-opensource.

Amongst the BRIDGE Developed components these are the most important ones made

available:

 The Service Catalogues

 Tunneling of large objects in the BRIDGE network.

 The possibility to tunnel all HTTP based communications through the BRIDGE Network

Manager, in order to provide support for REST based services.

 Modularized implementation to ease replacing and additions of new modules.

 IoTResource Tools

The list will be extended with the components that are still either under consideration to be

included or already in the process of being prepared for the Open Source release.

4.2 EVE

For the agent based parts of the BRIDGE platform many developed components have been

published in the EVE open source project: http://eve.almende.com/.

The Major EVE parts that have been created or extended within the BRIDGE project include:

 The XMPP transport layer

 The capability to run Eve agents effectively on Android mobile devices

 A push/pull combining "monitor" design pattern for robust communication

 A factor 100 latency decrease on generic Eve calls, part of a scalability effort for large

scale resource simulation

 An innovative gossip based agent event publication design

 A further development of the CAPE personal agent model

https://linksmart.eu/redmine/projects/linksmart-opensource
http://eve.almende.com/

