Deliverable reference: Date: Responsible partner:

D08.2 11 May 2015 CNet Svenska AB

Bridging Resources and Agencies in Large-Scale Emergency Management

BRIDGE is a collaborative project co-funded by the European Commission within
the Seventh Framework Programme (FP7-SEC-2010-1)

SEC-2010.4.2-1: Interoperability of data, systems, tools and equipment

Grant Agreement No.: 261817

EU FP7 Pro

. ”‘ Duration: 1 April 2011 — 31 March 2015
B R D G E www.sec-bridge.eu
Title:
Integrated and Quality Assured BRIDGE platform
Editor(s): Approved by:
Peeter Kool PCC
Classification:
Public

Abstract / Executive summary:
This deliverable describes the prototype D08.2 Integrated and Quality Assured BRIDGE platform.
The main part of the deliverable describes some typical integration cases in detail, outlining how the
BRIDGE platform can be reused and extended. There is also a section that describes which tools and
software components are available from the project and how to use them.

Note that this is not the final version of the deliverable but it will be extended and submitted before
the end of the project. The main addition that will be added is the example of creating and extending
the BRIDGE platform with protocol transformations, see section 2.3. Finally, the Open Source
section 4 will be updated with additional components.

*
Document URL: ISBN number: :* *:
http://www.sec-bridge.eu/deliverables/... - * *

\ /\
LUALNZLN _
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 2 of 45

/

Table of Contents

Integrated and Quality Assured BRIDGE platform...........cccooieiiiiiiieiceeee e 1
TADIE OF CONTENTS ...ttt bbb bbb bbb bbb bbb bbb 2
WEESION HISTOTY ...ttt bbbt bbbt bbbt b bbbt b e bbbt bbbt b 3
CONLFIDULING PAITNEIS. ..ottt bbbt b bbb bbbt bbb e bt 4
LESE OF FIQUIES ...ttt b et b et b e bbbt eb e nb e eb e nb et ebenb et e ane e 5
LiSt Of ADDIFEVIATIONSviiiiiecic et 6
1 INEFOTUCTION .ottt b et e n et 7
N 101 (=T | £ 1 (o] o TSP SPTT TSP 9
2.1 PUBLISHING INFORMATION AND EVENTSvittteteierereeeesesesssesssseseseseseesessssssssssssesesessssnssssssses 9
2.1.1 The BRIDGE ASA INteQration SEIVICEccveuiiieiieieeiteesieeie sttt e st steesae e sreeseeenee s 10

2.2 CONSUMING INFORMATION AND EVENTSoeuviiiriniearisieeieeiesrtsresnessesseese e snesnesne s ssesssesnesnennes 17
2.2.1 The BRIDGE WISE INtegration SEIVICEccvciveiieieeieesie e eie e st se e ste e 18

2.3 CREATING A PROTOCOL TRANSFORMATIONcuvitiiiitisiesiiesiessesre st ssesieessesne s sne s snesseessesnesnennes 23
24 ENABLING A SERVICE IN THE BRIDGE PLATFORMccuviiiiiiieiiisrcsiesice et 23
2.4.1 Enabling a service on the BRIDGE NEIWOIKc.cooveiiiiieiiiiieciesiesee e 24
2.4.2 Registering Service Metadata in the loTResource Cataloguecccooevvireiiiineiincnennas 26

3 DEVEIOPMENT TOOIS. .. c.e ittt bbbttt bbb 29
3.1 IOTRESOURCE BUILDER AND SERVICE ANNOTATIONS ..ottt st 29
3. 1.1 SErVICE ANNOTALIONS.ieiiiitiieieite ettt ettt b e e bbb sb et ebe e e ebe e s 29
3.1.2 Use of The resource DUITAETc.coviiiiiiiici e 30
3.1.3 Components in the I0TReSOUICE BUIIETcocciiiiiiiiiiicre e 35

3.2 IOTRESOURCE CATALOGUEviiiiiieieeiite sttt ettt sttt n e n e nr bbb nne s 40
3.2.1 Catalogue Services and ACLIONSc.ccveiieiieiiiiieseeseesteese e et se e te e sae e e e sreenae e 40

3.3 IOTRESOURCE CATALOGUE BROWSER.ctiitiiiitisieeiieiese ettt 43

4 Components in Open Source PUblic REPOSITOFIES.cccoiiirieiiiieeeeee e 45
4.1 LINKSMART L.ttt bbb sn bbbt s 45
42 Y T TSRO TP PP P RTPPTRPRRIR 45

Version 0.6: Draft 11.05.2015

N\

Eﬁ?ﬁ D08.2: Integrated and Quality Assured BRIDGE platform Page 3 of 45
Version History
Version® Description Date Who
0.1 Initial TOC 7.11.2011 | Peeter Kool
0.2 ASA Integration Case 09.06.2014 | Peeter Kool,
Aslak Eide,
Antoine Pultier
Mark Vinkovits
0.3 loTResource Builder, initial content 10.10.2014 | Matts Ahlsén
Peeter Kool
0.4 BRIDGE WISE Integration 31.3.2015 | Andreas
Carlsson,
Peeter Kool
0.5 Added initial content for Open Source 15.4.2015 | Peeter Kool,
section
Ludo
Stellingwerff
0.6 Edited for final draft version to be submitted = 11.05.2015 | Matts Ahlsén
before the review Peeter Kool

Version 0.6: Draft 11.05.2015

BRIDGE

D08.2: Integrated and Quality Assured BRIDGE platform

Contributing partners

Page 4 of 45

Matts Ahlsén

CNet
| C m Danderyd matts.ahlsen@cnet.se
' Sweden Peeter Kool
Peeter Kool@cnet.se
UNIKLU Christian Raffelsberger

"' ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

Alpen-Adria-Universitit Klagenfurt
Klagenfurt, Austria

christian.raffelsberger@aau.at

\

~ Fraunhofer
FIT

FIT

Fraunhofer-Institut fir Angewandte
Informationstechnik

Sankt Augustin, Germany

Andreas Zimmermann
andreas.zimmermann@fit.fraunhofer.de
Mark Vinkovits
Mark.vinkovits@fit.fraunhofer.de

SINTEF

SINTEF

Strindveien 4
7034 Trondheim

Antoine Pultier
Antoine.Pultier@sintef.no

Norway Aslak Eide
Arnor.Solberg@sintef.no
gAAdB Group Andreas Carlsson
weden andreas.ac.carlsson@saabgroup.com
Almende Ludo Stellingwerff
Rotterdam ludo@almende.org

Netherlands

Version 0.6: Draft 11.05.2015

mailto:matts.ahlsen@cnet.se
mailto:Peeter%20Kool@cnet.se
mailto:andreas.zimmermann@fit.fraunhofer.de

A

A

/EI?(AIM\E)LG_E\. D08.2: Integrated and Quality Assured BRIDGE platform Page 5 of 45
List of Figures

FIGURE 1: BRIDGE SYSTEM OF SYSTEMS CONTEXT ...uccutteutiaitesttesieestessteesseasesssesseesseessesssesssessssssesssesssesssessns 7
FIGURE 2: ARCHITECTURE OF THE ASA INTEGRATION ...c.vettiteieiiitesierestesterestesieresteseesesteseesessessesessesessessensane 9
FIGURE 3: THE BRIDGE ASA INTEGRATION SERVICE ARCHITECTUREccittiitteteateniresieesieesieeieseesineseeas 11
FIGURE 4: WISE INTEGRATION ARCHITECTUREutttriitiiteeesistetesesteseesessessesessessessssessensssessessasessensasessensns 18
FIGURE 5: BRIDGE WISE INTEGRATION SERVICE ARCHITECTURE ...c.veuvitiierisienienesiesienesiesieessesieeeseseenens 19
FIGURE 6: MANUAL IOTRESOURCE CATALOGUE REGISTRATIONcvviiuierieesteesteetesneesieesseesteeseesseesseessnesenas 26
FIGURE 7: SERVICE SUMMARY DESCRIPTION USING THE IOTRESOURCE BUILDERccccovviiieinieieenieene 31
FIGURE 8: SERVICE SUMMARY XML ...ttt ettt sttt 32
FIGURE 9: ACTION ANNOTATION ...cuteteeteesteesteesteasreaseesseesseeseesseassesssesseessessseesseensesssesssesseesseessesssesssessnssses 32
FIGURE 10: ACTION ANNOTATION XML ..ttt ettt 33
FIGURE 11: STATE VARIABLE ANNOTATIONtviutitiitisieststesesessessessasessessasessessssessessasessessssessessasessesasessensans 34
FIGURE 12: ANNOTATIONS FOR STATE VARIABLES......ccueiitietietieiesiesiee e steesne e s snresnee s e sneesneesnessnessnesneas 35
FIGURE 13: IOTRESOURCE BUILDER COMPONENTSceitttitietiesteesiesseesieesiesstessseassesssesssessesssesssesssesssessessses 36

FIGURE 14: EXAMPLE OF AN IOTRESOURCE DESCRIPTION XML. COLOURED RECTANGLES REPRESENT THE

ANNOTATION SECTIONS. 11utttetttetrtesireastrtssiesasssesstesssssassesssessssesastsesssesassseassesstsssssesssssssnsessssessssessses 38
FIGURE 15: DEVELOPMENT ENVIRONMENT GENERATEDccviiiuiiieitieiteesteesteesteenseessesssesseessesssesssesssesnesnnes 39
FIGURE 16: |OT RESOURCE CATALOGUE.......uiiitttiittiiee ettt ssteesteesstesasessstessssessssesssssesssaessssessssessssssssesssssens 40
FIGURE 17: CATALOGUE SERVICESeiiittiitieiitteeteeasteeasteeastesateeasseeasssassesasssasssasssssessssesssssssnsessssssseessnes 41
FIGURE 18: RESULT OF RESOURCE CATALOGUE QUERYccutiitiiiiieeiieesieeenteeesiaeestseessneesssesssneesssesssnesssnens 41
FIGURE 19: INITIAL WINDOWS 10T RESOURCE BROWSER WINDOWcviiiiiieiiiesireesireesinesssnesssnesssnessseesssnes 43
FIGURE 20: SECOND TAB WITH IOT RESOURCES END POINTS......cecitieitreeitieereeestneessseessneesssesssneessseessessssnens 43
FIGURE 21 EXPANDED VIEW......0iiitttitttiiee sttt aieessiesssiesasesassesssssssssesssssssssesssssssssssssssssssssssssssssssssssssssessssees 44

Version 0.6: Draft 11.05.2015

A

A

/Eﬁ“l“\ﬁ%,_g\ D08.2: Integrated and Quality Assured BRIDGE platform Page 6 of 45
List of Abbreviations
DLNA Digital Living Network Alliance
EDXL Emergency Data Exchange Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
JXTA P2P protocol https://jxta.kenai.com/
P2P Peer to Peer network
REST Representational State Transfer
SCPD Service Control Protocol Description
SOAP Simple Object Access Protocol
SSDP Simple Service Discovery Protocol
UPnP Universal Plug and Play
USDL Unified Service Description Language
WSDL Web Services Description Language
XSLT Extensible Stylesheet Language Transformations

Version 0.6: Draft 11.05.2015

A
/H\ N

LN :

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 7 of 45

1 Introduction

This report describes the prototype deliverable D08.2 Integrated and Quality Assured BRIDGE
platform which is the result from Task 8.2 Integration of System Components.

Mobile Sensors Training

Master-Table
" Command & Control
°

y 4 h
Orchestration N
Triggers 3

Workflow
Management

Fixed Sensors = /A‘/
/

Transformation &
Eventing

.$ Communication
| Media Publish &

[Messaging Streaming || Subscribe

\ Hospitals

Network Management

Data- / Model Management

m
A
1snu) g Qunoag
\ gl)’\

Service
Tagging Identification Catalogue |

teams
® /
. /
- DI]III Network Shared On-Site | /
O Information || Dataspace Storage | ¥ 4
/
/-

Figure 1: BRIDGE system of systems context

The BRIDGE system of systems is a very complex platform with many interacting components.
The components themselves and client systems interfaces are primarily described in other
deliverables:

e Middleware in D05.2, together with D05.3
e Agent based components including QoS in DO7.5A and D07.4
e Connection to command post (the Master) and mobile devices in D06.3

e The overall system architecture and service organization is described in deliverables
D04.2 and D04.3

Version 0.6: Draft 11.05.2015

\ N
A NN D

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 8 of 45

/

The main part of the deliverable describes some typical integration cases in detail, outlining
how the BRIDGE platform can be reused and extended. There is also a section that describes
which tools and software components are available from the project and how to use them.

Finally there is also a section, section 4, dedicated to describe the parts of the BRIDGE platform
which have been published as open source in different public repositories. This section contain
links where to find the source code as well as other developer resources.

Note that this is not the final version of the deliverable but it will be extended and submitted
before the end of the project. The main addition that will be added is the example of creating
and extending BRIDGE platform with protocol transformations, see section 2.3. Additionally
the Open Source section 4 will be updated with additional components.

Version 0.6: Draft 11.05.2015

/!

A

'y
N
A\

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 9 of 45

2 Integrations

In order to describe some typical cases of integration with the BRIDGE platform we have
selected four cases which are based on actual integrations made within the project. The four
cases are:

Publishing information and events on the BRIDGE platform
Consuming information and events on the BRIDGE platform
Creating a protocol transformation

Enabling a service in the BRIDGE platform

The following subsections will describe these types of integrations.

2.1 Publishing information and events

This case is based on the integration of the Advanced Situational Awareness (ASA) concept
case in to the BRIDGE platform. The main goals for this integration is to link the information
generated by the ASA systems to be published on the BRIDGE network. The basic architecture
is shown in Figure 2.

ASA Software

BRIDGE ASA

Integration Service \K?:::f:

Event with link

Consumer

Figure 2: Architecture of the ASA Integration

Version 0.6: Draft 11.05.2015

AN __./:'_

/ \ / '-.\
T

ER!L;GE D08.2: Integrated and Quality Assured BRIDGE platform Page 10 of 45
The output from the ASA system is stored in a file system that is part of a web server.
The main components in the architecture are:

e ASA Software: All the programs that produce information, i.e. Hexacopter, Expert
System and Modelling.

o WWW Server: A webserver provided by ASA to distribute information.

e BRIDGE ASA Integration Service: Will publish the available information in the ASA
WWW Server to the BRIDGE network.

The integration with the BRIDGE platform is done using the file system at the ASA server as
connection, i.e. all information transfer is using the file system as media.

An important concept when the ASA software publishes information is Metadata files. These
are XML files which contain extra information that describes the content files/streams that are
published on the ASA WWW Server. This is the information that the BRIDGE ASA Integration
Service will use to create the events that will be sent to the shared dataspace.

Since we do not want to send the actual information payload with the event the events will
contain links that can be used to retrieve the information when needed. The link format is
described in BRIDGE deliverable D05.2[1].

2.1.1 The BRIDGE ASA Integration Service

The BRIDGE ASA Integration Service (BAIS) was created as the glue in-between the BRIDGE
network and the ASA system. The implementation of BAIS is based on BRIDGE middleware
components.

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 11 of 45

BRIDGE ASA Integration Service

— =

Look fornew _______|

ASA Integration Component metadata files ASA Server

Create BRIDGE Link Select transformation
Publish event

S

Format Transformations

v
BRIDGE Network

Figure 3: The BRIDGE ASA Integration Service Architecture

In Figure 3 the components in the BAIS which are blue colored are BRIDGE Middleware
components. The architecture of the BAIS contains the following components:

e ASA Integration Component: Contains all the integration specific bespoke
functionality. l.e. it contains the logic necessary to access the ASA server and retrieve
information. It will then use the BRIDGE Middleware components to enable the ASA
data to be published and consumed in the BRIDGE network.

e On-Site Storage: In this integration the On-Site storage is used for creating the BRIDGE
links that enables access to information such as images etc. over the BRIDGE network.

e Format Transformations: Provide transformations from the ASA internal formats to
BRIDGE network compatible formats, i.e. EDXL based formats.

e Network Manager and Service Catalogue: Enables communication with the BRIDGE
network.

Version 0.6: Draft 11.05.2015

\ /\
LUALNZLN _
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 12 of 45

/

In the BRIDGE ASA Integration Service a number of integrations were implemented for the
different types of information that ASA to be published and made available on the BRIDGE
network:

e Advise: Output from the expert system

e Modelling data: Outputs from modelling, i.e. plume dispersion images et c.
e UAV Resource data: i.e. Position, status.

e UAV Static Images: Images captured by the UAV operator.

e UAV Video feeds: The feed from the video and IR cameras on the UAV.

We have selected to highlight two of these integrations in the next subsections to illustrate the
how these integrations were implemented. The two different cases represent the typical patterns
used in the ASA integration.

Modelling data

This is the output from the modelling, for instance toxic plume dispersion over time. Each
output contains files in jpg format of different resolutions to enable the consumer of the
information to select resolution depending on need, for instance bandwidth constraints or
display device resolution.

<ASAMetaData>
<Description>Plume modelling output 30 minutes with wind change to SW 3 m/s </Description>
<TimeStamp>2014-05-22T23:02:01.122Z</TimeStamp>
<I-- In seconds (optional) -->
<ModelTimeAfterIncident>1800</ModelTimeAfterIncident>
<1--GPS coordinates For UAV images and video in [x,y(,z)]... format-->
<PositionContent>[18.9827839, 69.7031209][19.9827839, 69.7031209] </PositionContent>
<I-- Upper left and lower right -->
</ASAMetaData>

Listing 1: Metadata file for modelling data

Listing 1 shows an example of the Metadata file that accompanies modelling images. This file
contains additional information that is used for creating the BRIDGE event that is published.
The Metadata fields are:

e Description: Plain text describing the contents being published.

e TimeStamp: At what time was this model created.

e ModelTimeAfterincident. Optional field that contains the number of seconds past from
the incident the contents depict.

e PostionContent: Upper left and lower right geo coordinates for the model. This is
useful to overlay the images on a map.

When the ASA Integration Service discovers this Metadata file it creates the BRIDGE link
using the On-Site Storage service and the finally selects an appropriate Format Transformation.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>
<xsl:output method="xml" indent="yes"/>
<xsl:param name="urlEnd" select="'?Description=Asa:Webserver'"/>

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 13 of 45

<xsl:param name="messageGuid" select="'3F2504E0-4F89-41D3-9A0C-0305E82C3301""/>
<xsl:param name="webPath" select="'/CloudModels/"'"/>

<xsl:param name="urlStem" select=""http://127.0.0.1:8082/SOAPTunneling/@/0/"'"/>
<xsl:param name="fileName" select="'Test'"/>

<xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z2"'"/>

<xsl:template match="/">
<EDXLDistribution xmlns='urn:oasis:names:tc:emergency:EDXL:DE:1.0"'>
<distributionID>
<xsl:value-of select="'$messageGuid'/>
</distributionID>
<senderID>ASA@bridgeproject.eu</senderID>
<dateTimeSent>
<xsl:value-of select="$timeNow'/>
</dateTimeSent>
<distributionStatus>Exercise</distributionStatus>
<distributionType>Request</distributionType>
<combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
<language>EN</language>
<contentObject>
<contentDescription>MEXL-CloudModelUpdate</contentDescription>
<contentKeyword>
<valuelListUrn>http://icnet.mitre.org/ValuelLists/ContentKeywords</valuelListUrn>
<value>MEXL-CloudModelUpdate</value>
</contentKeyword>
<xmlContent>
<embeddedXMLContent>
<CloudModelUpdate xmlns='urn:BRIDGE:ASA'>
<CloudRectangle xmlns="'">
<TopLeft xmlns=""'>
<xsl:variable name ='firstCoord' select='substring-
before(substring(.//PositionContent,2),"[")" />
<gml:Point xmlns:gml="http://www.opengis.net/gml'>
<gml:pos>
<xsl:value-of select="translate(substring-before($firstCoord,"]"),",","
"Y'/
</gml:pos>
</gml:Point>
</TopLeft>
<LowerRight xmlns="">
<xsl:variable name ='secondCoord' select='substring-
after(substring(.//PositionContent,2),"[")"' />
<gml:Point xmlns:gml="http://www.opengis.net/gml"'>
<gml:pos>
<xsl:value-of select="translate(substring-before($secondCoord,"]1"),",","
"/
</gml:pos>
</gml:Point>
</LowerRight>
</CloudRectangle>
<SituationObservation xmlns="'"'>
<ObservationText>
<xsl:value-of select='.//Description'/>
</ObservationText>
<ModelTimeAfterIncident>
<xsl:value-of select="'.//ModelTimeAfterIncident'/>
</ModelTimeAfterIncident>
<TimeStamp>
<xsl:value-of select="'.//TimeStamp'/>
</TimeStamp>
<xsl:copy-of select='bridge:Links' xmlns:bridge="urn:bridge:1ink"/>
</SituationObservation>
</CloudModelUpdate>
</embeddedXMLContent>
</xmlContent>
</contentObject>

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 14 of 45

</EDXLDistribution>
</xsl:template>
</xsl:stylesheet>

Listing 2: Modelling data transformation.

Listing 2 shows the XSLT transformation that transforms the Modelling data with the BRIDGE
links into an EDXL based BRIDGE format that can be consumed on the BRIDGE network. It
can be noted that the transformation also does transformation of the actual data values, in this
case coordinates are transformed into GML based format.

<EDXLDistribution xmlns="urn:oasis:names:tc:emergency:EDXL:DE:1.0">
<distributionID>3F2504EQ-4F89-41D3-9A0C-0305E82C3301</distributionID>
<senderID>ASA@bridgeproject.eu</senderID>
<dateTimeSent>2015-04-01722:23:12.573Z</dateTimeSent>
<distributionStatus>Exercise</distributionStatus>
<distributionType>Request</distributionType>
<combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
<language>EN</language>
<contentObject>
<contentDescription>MEXL-CloudModelUpdate</contentDescription>
<contentKeyword>
<valuelistUrn>http://icnet.mitre.org/ValuelLists/ContentKeywords</valueListUrn>
<value>MEXL-CloudModelUpdate</value>
</contentKeyword>
<xmlContent>
<embeddedXMLContent>
<CloudModelUpdate xmlns="urn:BRIDGE:ASA">
<CloudRectangle xmlns="">
<TopLeft>
<gml:Point xmlns:gml="http://www.opengis.net/gml">
<gml:pos>18.9827839 69.7031209</gml:pos>
</gml:Point>
</TopLeft>
<LowerRight>
<gml:Point xmlns:gml="http://www.opengis.net/gml">
<gml:pos>19.9827839 69.7031209</gml:pos>
</gml:Point>
</LowerRight>
</CloudRectangle>
<SituationObservation xmlns="">
<ObservationText>Plume modelling output 30 minutes with wind change to SW 3 m/s
</ObservationText>
<ModelTimeAfterIncident>1800</ModelTimeAfterIncident>
<TimeStamp>2014-05-22T723:02:01.1227Z</TimeStamp>
<bridge:Links xmlns:bridge="urn:bridge:1ink">
<bridge:Link description="Full resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testhigh.jpg?Description=Asa:We
bserver</bridge:Url>
<bridge:Size>58937392</bridge:Size>
<bridge:Mimetype>image/png</bridge:Mimetype>
</bridge:Link>
<bridge:Link description="Medium resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testmiddle.jpg?Description=Asa:
Webserver</bridge:Url>
<bridge:Size>50883</bridge:Size>
<bridge:Mimetype>image/png</bridge:Mimetype>
</bridge:Link>
<bridge:Link description="Small resolution">

<bridge:Url>http://127.0.0.1:8082/GrandTunneling/0/0/CloudModels/Testlow.jpg?Description=Asa:Web
server</bridge:Url>
<bridge:Size>3322</bridge:Size>

Version 0.6: Draft 11.05.2015

A
/H\ N
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 15 of 45

<bridge:Mimetype>image/jpg</bridge:Mimetype>
</bridge:Link>
</bridge:Links>
</SituationObservation>
</CloudModelUpdate>
</embeddedXMLContent>
</xmlContent>
</contentObject>
</EDXLDistribution>

Listing 3: Example of the final event format for Modelling data

Listing 3 shows the final result of the transformation wrapped in EDXL format. This data is
then forwarded to the BRIDGE network as an event using the Network Manager and the Service
Catalogue.

UAYV Position

The UAV position and status is continuously updated every 3-5 seconds when the UAV is
active. Since this is very lightweight information only a Metadata file will be created and no
other data files.

<ASAMetaData>
<!-- Description is Resource ID, i.e. the UAV identity-->
<Description>UAV1</Description>
<TimeStamp>2014-05-22T23:02:01.1227Z</TimeStamp>
<!--GPS coordinates For [x,y(,z)]... format-->
<PositionContent>[18.9827839, 69.7031209, 120]</PositionContent>
</ASAMetaData>

Listing 4: UAYV Position Metadata

Listing 4 shows an example of the Metadata file that accompanies the UAV position. This file
contains additional information that is used for creating the BRIDGE event that is published.
The Metadata fields are:

e Description: Resource ID, i.e. the UAV identity.
e TimeStamp: At what time the UAV position was recorded.
e PostionContent: The UAV position including height.

When the ASA Integration Service discovers this Metadata file it will immediately select the
appropriate Format Transformation. Since there is no additional data associated with the
Metadata there is no need to invoke the On-Site storage because all of the information will be
contained in the event that is published on the BRIDGE network.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>

<xsl:output method="xml" indent="yes"/>

<xsl:param name="messageGuid" select="'3F2504E0-4F89-41D3-9A0C-0305E82C3301""/>
<xsl:param name="fileName" select="'Test'"/>

<xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z2"'"/>

<xsl:template match="/">

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 16 of 45

<ReportResourceDeploymentStatus xmlns="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg"
xmlns:rm="urn:oasis:names:tc:emergency:EDXL:RM:1.0" xmlns:geo-
oasis="urn:oasis:names:tc:emergency:EDXL:HAVE:1.0:geo-o0asis"
xmlns:xal="urn:oasis:names:tc:ciqg:xal:3" xmlns:xnl="urn:oasis:names:tc:ciq:xnl:3"
xmlns:xpil="urn:oasis:names:tc:ciq:xpil:3" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"”
xsi:schemaLocation="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg EDXL-
RMReportResourceDeploymentStatus.xsd">
<MessageContentType xmlns="">ReportResourceDeploymentStatus</MessageContentType>
<MessageID xmlns="">
<xsl:value-of select="'$messageGuid'/>
</MessagelD>
<SentDateTime xmlns="">
<xsl:value-of select="$timeNow'/>
</SentDateTime>
<OriginatingMessageID xmlns=
<ContactInformation xmlns="">
<ContactRole>Sender</ContactRole>
</ContactInformation>
<ResourceInformation xmlns="">
<ResourceInfoElementID>1</ResourceInfoElementID>
<Resource>
<ResourceID>@ec33f9b-b8f1-44e2-99de-0a8dde®4ab68b</ResourcelD>
<Name>UAV</Name>
<TypeStructure>
<rm:Value>UAV</rm:Value>
<rm:ValueListURN>urn:x-hazard:vocab:resourceTypes</rm:ValueListURN>
</TypeStructure>
<ResourceStatus>
<DeploymentStatus>
<rm:Value>Unknown</rm:Value>
<rm:ValuelListURN>urn:x-hazard:vocab:deploymentStatusTypes</rm:ValueListURN>
</DeploymentStatus>
</ResourceStatus>
</Resource>
<ScheduleInformation>
<ScheduleType>Current</ScheduleType>
<Location>
<rm:TargetArea>
<xsl:variable name ='firstCoord' select='substring-
before(substring(.//PositionContent,2),"1")" />
<gml:Point>
<gml:pos>
<xsl:value-of select="translate($firstCoord,","," ")'/>
</gml:pos>
</gml:Point>
</rm:TargetArea>
</Location>
</ScheduleInformation>
</ResourceInformation>
</ReportResourceDeploymentStatus>
</xsl:template>
</xsl:stylesheet>

>001</0OriginatingMessageID>

Listing 5: The UAYV position transformation

Listing 5 shows the transformation that is used for creating the BRIDGE event from UAV
position Metadata. In this case it creates an EDXL-RM formatted message.

<ReportResourceDeploymentStatus xsi:schemalLocation="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg
EDXL-RMReportResourceDeploymentStatus.xsd"” xmlns="urn:oasis:names:tc:emergency:EDXL:RM:1.0:msg"
xmlns:rm="urn:oasis:names:tc:emergency:EDXL:RM:1.0" xmlns:geo-
oasis="urn:oasis:names:tc:emergency:EDXL:HAVE:1.0:geo-o0asis"
xmlns:xal="urn:oasis:names:tc:ciqg:xal:3" xmlns:xnl="urn:oasis:names:tc:ciq:xnl:3"

Version 0.6: Draft 11.05.2015

A
DA
LUNEN _

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 17 of 45

xmlns:xpil="urn:oasis:names:tc:ciq:xpil:3" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<MessageContentType xmlns="">ReportResourceDeploymentStatus</MessageContentType>
<MessageID xmlns="">3F2504E0-4F89-41D3-9A0C-0305E82C3301</MessageID>
<SentDateTime xmlns="">2015-04-11T22:23:12.573Z</SentDateTime>
<OriginatingMessageID xmlns="">001</OriginatingMessageID>
<ContactInformation xmlns="">
<ContactRole>Sender</ContactRole>
</ContactInformation>
<ResourceInformation xmlns="">
<ResourceInfoElementID>1</ResourceInfoElementID>
<Resource>
<ResourceID>@ec33f9b-b8f1-44e2-99de-0a8dde@4ab68b</ResourceID>
<Name>UAV</Name>
<TypeStructure>
<rm:Value>UAV</rm:Value>
<rm:ValueListURN>urn:x-hazard:vocab:resourceTypes</rm:ValuelListURN>
</TypeStructure>
<ResourceStatus>
<DeploymentStatus>
<rm:Value>Unknown</rm:Value>
<rm:ValuelListURN>urn:x-hazard:vocab:deploymentStatusTypes</rm:ValueListURN>
</DeploymentStatus>
</ResourceStatus>
</Resource>
<ScheduleInformation>
<ScheduleType>Current</ScheduleType>
<Location>
<rm:TargetArea>
<gml:Point>
<gml:pos>18.9827839 69.7031209 120</gml:pos>
</gml:Point>
</rm:TargetArea>
</Location>
</ScheduleInformation>
</ResourceInformation>
</ReportResourceDeploymentStatus>

Listing 6: The EDXL-RM message that is created from UAV position Metadata

Listing 6 shows the final result of the transformation wrapped in EDXL-RM format. This data is
then forwarded to the BRIDGE network as an event using the Network Manager and the Service
Catalogue.

2.2 Consuming information and events

This case is based on the actual integration of the WISE system in the BRIDGE platform. The
basic functionality of the integration is to allow WISE to eavesdrop on events and data being
processed on the BRIDGE network.

Version 0.6: Draft 11.05.2015

A

ZIN/EN

BRIE)GE. D08.2: Integrated and Quality Assured BRIDGE platform Page 18 of 45

BRIDGE WISE :;;;i

Integration WISE

Service 777J

Shared

Storage

// - . T
Events
/

"~ BRIDGE network

—

Shared
Dataspace

Figure 4: WISE integration architecture

Figure 4 shows the WISE integration architecture with the connection to the WISE system. The
method of communicating with WISE is through a shared storage, i.e. the BRIDGE WISE
Integration Service writes events to the shared storage and the WISE system reads the events.

The WISE system has no need to interact with the BRIDGE network except for receiving events
so the integration is unidirectional.

2.2.1 The BRIDGE WISE Integration Service

The BBRIDGE WISE Integration Service acts as the glue for the WISE system to part of the

BRIDGE network. The service itself is built out both BRIDGE Middleware components and
BRIDGE software classes.

Version 0.6: Draft 11.05.2015

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 19 of 45

BRIDGE WISE Integration Service

Integration Main

Start/stop subscribe Start/Stop event handling

Subscription Manager Event Receiver ~Events

]

SharedDataspace Client €—VA HTTP Server

Subscription Request Events

Register server

Figure S: BRIDGE WISE Integration Service architecture

Figure 5 shows the different components of the BRIDGE WISE Integration Services. The blue
coloured components are part of the BRIDGE Middleware services, the green coloured
components are part of the BRIDGE class library and the white components are bespoke to the
integration.

The difference between the BRIDGE Middleware Services and the BRIDGE class library is that
the Middleware Services run as separate components whilst the BRIDGE Middleware classes
are used as class library, i.e. they become part of the executable. The BRIDGE Middleware
classes are reusable components that can be used by any service or component.

The components in Figure 5 are

e Integration Main: Starts and stop the subscriptions and events listening.
e Subscription Manager: Takes care of which subscriptions should be made.

Version 0.6: Draft 11.05.2015

ER!‘G_E\I D08.2: Integrated and Quality Assured BRIDGE platform Page 20 of 45

e Event Receiver: Manages the received events and forwards them to shared storage. It
also controls the HTTP Server that is the entry point for events.

e Shared Dataspace Client: Exposes the shared dataspace services in the BRIDGE
network, hiding the communication complexity when interacting with the shared
dataspace.

e HTTP Server: Is a generic class that implements an HTTP server which in this case is
used to receive the events from the BRIDGE network.

e Network Manager and Service Catalogue: Enables communication with the BRIDGE
network.

In the following subsections we will describe how to create an event listener and to manage
subscriptions using the BRIDGE classes using both descriptions and actual code listings.

Setting up an event listener

The HTTP Server class provides the necessary functionality to create and run a BRIDGE
network enabled event listener. Some BRIDGE Middleware services use this class in their own
implementation, such as the On-Site Storage Service.

The API provided by the HTTP Server class is simple and straightforward with the following
public methods and properties:

e HTTPServer (string listenerPrefix, bool registerInServiceCatalogue, Parts[]
Registration) Initializes a new instance of the HTTPServer class.

e event EventHandler< HttpRequestEventArgs > IncomingRequest = null
Callback function for incoming HTTP requests.

e virtual void Start ():
Starts this instance.

e virtual void Stop ()
Stops this instance.

e State RunState [get]
Gets the state of the HTTP Server.

e VirtualAddress virtualAddress [get]
Gets the virtual address.

o virtual UriUrl [get, set]
Gets the URL for the HTTP server.

Using the HTTPServer class involves the following steps:

e Define a callback for incoming HTTP requests, this is where the actual processing of the
request is done.

e Create the HTTPServer providing which endpoint it will listen to, for instance
http://127.0.0.1:88/, if it should be registered in the service catalogue and finally the
service catalogue information.

Version 0.6: Draft 11.05.2015

http://127.0.0.1:88/

VAN

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 21 of 45
e Start the HTTP server.

The following listing provides an example of the necessary code implementing the described
steps.

ServiceCatalogue.VirtualAddress _VirtualAddress = null;
HTTPServer listener = null;

private bool SetupEventListenerAndRegisterToBRIDGENetwork()
{

ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[];

ServiceCatalogue.Part a = new ServiceCatalogue.Part();
a.key = "DESCRIPTION";

a.value = "TEST_BRIDGE_listener";

parts[] = a;

a = new NetworkManager.NetworkManager2@WebReference.Part();
a.key = "SID";

a.value = "urn:BRIDGE:event-listener";

parts[] = a;

//Create the HTTPServer

listener = new HTTPServer("http://127.0.0.1:88/, true, parts);
_VirtualAddress = listener.virtualAddress;

//Set up the Callback for HTTP requests
listener.IncomingRequest += (WebServer_IncomingRequest);
listener.Start();

}

/// <summary>
/// Handles the IncomingRequest event of the HTTPServer control.
/// </summary>
/// <param name="sender">The source of the event.</param>
/// <param name="e">The <see cref="HttpRequestEventArgs"/> instance containing
the event data.</param>
protected void WebServer_IncomingRequest(object sender, HttpRequestEventArgs e)
{
HttplListenerResponse response = e.RequestContext.Response;
HttpListenerRequest request = e.RequestContext.Request;
//Create an StreamReader for the Payload
var streamReader = new StreamReader(request.InputStream);

try
{
if (!streamReader.EndOfStream)
{
//Process the request and payload
}

//Return OK to the caller

string responseString = String.Empty;

byte[] buffer = Encoding.UTF8.GetBytes(responseString);
response.StatusCode = (int)HttpStatusCode.OK;
response.StatusDescription = "OK";
response.ContentLength64 = buffer.Length;
response.ContentEncoding = Encoding.UTF8;

Version 0.6: Draft 11.05.2015

\

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 22 of 45

response.OutputStream.Write(buffer, , buffer.Length);
response.OutputStream.Close();
response.Close();

return;
}
catch (Exception ex)
{
System.Console.WriteLine("error:" + ex.Message);
}

Listing 7: Setting up an event listener in C# with HTTPServer

In Listing 7 the method SetupEventListenerAndRegisterToBRIDGENetwork creates the
HTTPServer instance using the adding the DESCRIPTION=TEST_BRIDGE_listener and SID=
urn:BRIDGE:event-listener to the Service Catalogue. The method
WebServer_IncomingRequest is the place where HTTP calls will be processed.

Creating a subscription using the SharedDataspace Client class.

The SharedDataspace Client class encapsulates the functionality of the Shared Dataspace
Service and extends it to include the functionality of finding the Shared Dataspace Service in
the BRIDGE network using the Service Catalogue.

The API for the Shared Dataspace has the following functions:

e SharedDataspaceClient (Part[] SharedDataspaceServiceCatalogueQuery)
Initializes a new instance of the SharedDataspaceClient class and it will connect to
the Shared Dataspace Service that will match the
SharedDataspaceServiceCatalogueQuery in the Service Catalogue.

e Dbool publish (System.String topic, System.String contentType, System.String metadata,
System.String payLoad, string persist, string itemld)
Publishes the specified payload on the topic.

e string query (System.String topic, System.String filter)
Queries the specified topic.

e void subscribe (string topic, string filter, string Virtual Address)
Subscribes to the specified topic.

e string subscribeWithServiceFilter (string topic, string filter, string Virtual Address)
Subscribes to the Topic the with service filter.

¢ void Remove (System.String Topic, System.String Itemld)
Removes the specified item in the topic.

e void UnSubscribe (string subscriptionld)
Unsubscribe.

e string ListSubscriptions ()
Lists all the subscriptions in the shared data space.

The only real difference in-between the Shared Dataspace Service and the SharedDataspace
Client class is the constructor. The constructor takes a Service Catalogue query as a parameter.

This query will be used to determine which of the Shared Dataspace Services on the BRIDGE
network that will be invoked when using the Shared Dataspace Client.

Version 0.6: Draft 11.05.2015

"
\ .___f AN
\// \

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 23 of 45

/i

/

The following listing will show how the Shared Dataspace Client can be used in order to make a
subscription to a specific topics.

public void SetUpMySubScription(VirtualAddress VA)

{
//Create Query

Part[] parts = new Part[1];
Part a = new Part();

a.key = "DESCRIPTION";

a.value = "S2D2sCNet:StaticWS";
parts[@] = a;

SharedDataspaceClient sdc = new SharedDataspaceClient(parts);

//Subscribe
sdc.subscribe("App.global.ResourceStatus”, "", VA.asString);

Listing 8: Creating a subscription in C# with SharedDataspace Client

In Listing 8 describes how an subscription is created in the Shared Dataspace Service with the
description “S2D2sCNet:StaticWS” for the topic “App.global.ResourceStatus”. Note that the
Virtual Address of the event listener should be provided as parameter.

2.3 Creating a protocol transformation

In the final version of the deliverable this will show how to extend the BRIDGE platform with a
new protocol transformation. The example will show how the platform is extended to support
CONTINUA based standards and formats http://www.continuaalliance.org/ enabling different
medical devices to be connected to the BRIDGE platform.

2.4 Enabling a service in the BRIDGE platform

There are three main ways of enabling a service in the BRIDGE platform, i.e. making a service
available and accessible on the BRIDGE network:

e Creating a proxy that communicates with service using the loTResource Builder.
e Incorporating the code generated by the loTResource Builder into the service.
e Enabling the service using the available BRIDGE Middleware services.

The two first options involving the loTResource Builder are the easiest way to enable the
service in the BRIDGE network. The code stubs generated already contain the code for
registering the service in the Service Catalogue and it has automatically produced the service
description that will be part of the loTResource Catalogue. The usage of the tools is described in
section 3.1.

Therefore this section will deal with what is necessary for the third option where the service is
enabled by using the BRIDGE Middleware services. The integration with the BRIDGE system
and network can be done at different depths depending on ambition level and need. The simple
one where the service is discoverable and can be invoked using the BRIDGE network but the
caller must now what the service and its API beforehand. The fully enabled one where the

Version 0.6: Draft 11.05.2015

http://www.continuaalliance.org/

/ \ \
[iR

RIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 24 of 45

service provides additional metadata describing the service, its methods etc. that makes it
possible to dynamically determine what the service does and its API.

The two following sub section will detail how a service can be BRIDGE network enabled by
using the BRIDGE Middleware services. In order to understand the process please look at the
deliverable D05.2 that describes the inner working of the BRIDGE network.

2.4.1 Enabling a service on the BRIDGE network

In order to register a service on the BRIDGE network the service endpoints must be known. The
endpoint is the URL where the service can be accessed by a client application. The service can
have multiple endpoints, for example in order to make it available using different protocols, for
instance one for REST and one for Web Service protocols. Each of the services endpoints needs
to be registered individually in the Network Manager Service Catalogue

The process is repeated for each endpoint according to these steps:

e Create the meta description for the endpoint. This is a list of key value pairs with
properties. Two values are compulsory in all registrations: DESCRIPTION that
describes the endpoint, for instance S2D2sCNet:REST; SID The service identity, for
instance urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1, this attribute describes
which interface/service is implemented.

e Make a registration call to the local BRIDGE Network Manager to register the service
endpoint. Note that the supplied endpoint must be accessible for the Network
Manager to reach, otherwise the service can never be called.

Version 0.6: Draft 11.05.2015

A
DA
LUNEN _

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 25 of 45

//Connect to the Service Catalogue

ServiceCatalogue.NetworkManager sc = new ServiceCatalogue.NetworkManager();
//Using the local network manager

sc.Url = "http://localhost:9090/cxf/services/NetworkManager";

//Using the local network manager

ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[5];
ServiceCatalogue.Part p = new ServiceCatalogue.Part();
//Create the DESCRIPTION (Mandatory key)

p.key = "DESCRIPTION";

p.value = "S2D2SDevice:StaticWS";

parts[@] = p;

//Create the SID (Mandatory key), Service ID

p = new ServiceCatalogue.Part();

p.key = "SID";

p.value = "urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1";
parts[1] = p;

//Create the PID (Optional key), Persistent ID. Needs to be a unique name on
the BRIDGE network.

p = new ServiceCatalogue.Part();

p.key = "PID";

p.value = "my unique id";

parts[2] = p;

//Examples of additional keys

p = new ServiceCatalogue.Part();
p.key = "HOST_NAME";

p.value = Environment.MachineName;
parts[3] = p;

p = new ServiceCatalogue.Part();
p.key = "START_TIME";

p.value = DateTime.Now.ToString(); ;
parts[4] = p;

//Make the registration
ServiceCatalogue.Registration rid = sc.registerService(parts, m_wsendpoint,
"eu.linksmart.network.grand.impl.GrandMessageHandlerImpl");

HID = rid.virtualAddressAsString;
System.Console.WriteLine("Virtual Address:" + HID);

Listing 9: Example of registering a service endpoint in C#

Listing 9 shows the steps in code where m_wsendpoint contains the endpoint for the service.
The SID (service identity) can be common for many services in the BRIDGE network when
they implement the same service interface (API). When this registration is done the service and
its endpoint is available to the whole BRIDGE network.

Version 0.6: Draft 11.05.2015

/ ."\

RIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 26 of 45

2.4.2 Registering Service Metadata in the loTResource Catalogue

Using the loTResource Builder services automatically register to the 10T Resource Catalogue by
using the standard UPnP discovery mechanism. This section will describe how to register the
Service Metadata using BRIDGE middleware service invocations in code.

The actual call to register the services is simple but some extra functionality must be
implemented in order for the service to be properly registered. This requires a small
understanding on how the SCPD works in relation with UPnP and how the loTResource
Catalogue deals with service descriptions.

loTResource Catalogue Enabled Service

e

UPnP device document

a N

‘ Servicel SCPD ‘ ‘ Service2 SCPD Document

Manual registration

Retrieve SCPD Retrieve SCPD

lotResource Catalogue

N

Figure 6: Manual IoTResource Catalogue registration

Figure 6 shows how the loTResource Catalogue finds services manually, the steps are as
follows:

e First the service makes a manual registration of the services it provides, this
registration contain links to SCPD files decribing each of the individual services.

e The loTResource Catalogue retrieves the description of the services and adds them to
the catalogue.

This means that the service must be able to publish the SCPD files for HTTP based retrieval.
This can be done by using any HTTP-based Web Server that can be accessed from the
loTResource Catalogue.

The UPnP Device document that is provided for the manual registration is a standard UPnP
device document.

Version 0.6: Draft 11.05.2015

A
A/
LZANZITN _
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 27 of 45

<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>@</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:IoTresource:testservice:1</deviceType>
<friendlyName>TestService</friendlyName>
<manufacturer>BRIDGE</manufacturer>
<modelName>Test</modelName>
<modelNumber>1</modelNumber>
<UDN>uuid:15696574-1a4d-42e0-8907-bee3ell0e2f1</UDN>
<servicelList>
<service>
<serviceType>urn:schemas-upnp-org:service:testservice:1</serviceType>
<serviceId>urn:serviceld:testservice:1</serviceld>
<SCPDURL>http://127:0.0.1:7237/serviceld-testservice-1_scpd.xml</SCPDURL>
</service>
</servicelist>
</device>
</root>

Listing 10: Example of XML document used to register service

Listing 10 shows a simple example device document that is used to register a service. In this
example only one service is provided “urn:serviceld:testservice:1”, but mor eservices can be
added to the serviceList. The most important parts that need to be eneterd correctly in the
document are:

e friendlyName: This is the name that service will have in different service browser

e serviceld: Should have the same content as the SID used to register in the Network
Manager Service Catalogue

e SCPDURL: This is the link to the SCPD document describing the service, this URL must
be accesible for the loTResource Catalogue.

The SCPD document for the service needs to be manually created using an XML editor, the
actual syntax and also links to some tools can be found at the UPnP forum web site
http://www.upnp.org/. A very simple example of an SCPD document is shown in Listing 11.

<?xml version="1.0" encoding="utf-8"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1</major>
<minor>@</minor>
</specVersion>
<actionList>
<action>
<name>TestMethod</name>
<argumentList>
<argument>
<name>testInput</name>
<direction>in</direction>

Version 0.6: Draft 11.05.2015

http://www.upnp.org/

]
VARV Y |
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 28 of 45

<relatedStateVariable>Test</relatedStateVariable>
</argument>
<argument>
<name>testResponse</name>
<direction»out</direction>
<retval />
<relatedStateVariable>Result</relatedStatevariable>
</argument>
</argumentlList>
</action>
</actionList>
<serviceStateTable>
<stateVariable sendEvents="no">
<name>Test</name>
<dataType>string</dataType>
</statevariable>
<stateVariable sendEvents="no">
<name>Result</name>
<dataType>boolean</dataType>
</stateVariable>
</serviceStateTable>
</scpd>

Listing 11: Example SCPD

The example SCPD can be extended with the service annotations described in section 3.1.1 to
add further meta data to the service.

Finally we show the code necessary to register the service in the loTResource Catalogue using
the BRIDGE Middleware API.

public void RegisterService()

{
XmlDocument xDeviceDocument = new XmlDocument();
xDeviceDocument.Load("mydeviceDocument.xml");
IoTResourceCatalogue.ApplicationDeviceManager
IoTResCat = new IoTResourceCatalogue.ApplicationDeviceManager();
IoTResCat.AddDevice(xDeviceDocument.InnerXml /*xml as string*/);
}

Listing 12: Manual Service Registration in the [oTResource Catalogue

As shown in Listing 12 the actual call to make the registration is simple but the complexity lies
in the creation of the SCPD files and to make sure that the description matches the actual
implementation. Therefore we recommend the usage of the loTResource Builder tool when
creating or enabling services on the BRIDGE network because the SCPD and registration
information will be created by the tool.

Version 0.6: Draft 11.05.2015

/ \ \
[iR

RIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 29 of 45

3 Development Tools

3.1 loTResource Builder and service annotations

The BRIDGE middleware provides access to the set of ICT resources in an emergency system
context, such as different sensing devices, data repositories, social media streams, UAVSs etc.
The middleware service layer provides client applications uniform access to all such resources
(below referred to as loTResources, which is the LinkSmart resource concept).

The loTResource Builder allows a developer to define loTResources and automatically generate
the necessary loTResource code stubs. Services can then be built using these loTResources. The
loTResources will also automatically register themselves in both the Network Manager Service
Catalogue as well as the loTResource Catalogue.

Complete description, tutorials and download of the loTResource Builder are available at:
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-
builder/

3.1.1 Service annotations

In order to facilitate the use of BRIDGE services both in run-time and in design time, the
platform supports the annotation of both services and resources. Annotations in this context
means the possibility to associate various semantic descriptions to loTResources via their
service access points.

The annotations can be made searchable for developers as an aid in service development. They
can also be used to facilitate the resource discovery processes, and service matching for
potential application clients. The annotations are included in the service definitions, which are
used as input to the code generation process, which creates program stubs for loTResources

There are different levels of service annotations.

e Service Summary, a description of the overall function of a service, including
references to standards or other external sources.

e Service Actions. Each service has one or more actions (operation /methods). Each
action implements some sensing or actuation function. Annotations include action
purpose, and arguments and results.

e Property Level (state variables). The arguments and results, the state variables, can
also be described in more detail, including their value sets and references to
standards.

e Effect annotations. Actions can also be annotated with a list of possible effects they
might have in the applications context, or more specifically on other state variables. As
an example, turning off a fan might cause a temperature raise, and perhaps also a
decrease in energy consumption.

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iot-resource-builder/iotresource-builder/

/ \ \
— e v

RIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 30 of 45

There are numerous approaches to service description frameworks. The service description tool
does not impose the use of any specific service annotation standard, but rather encourages the
referencing to domain specific standards, controlled vocabularies (or ontologies), in the
annotations of the service semantics, e.g., emergency messaging data set standards like EDXL.

From a structural and syntactical view, the service description is based on the UPnP? device
descriptions and the SCPD format, and USDL?®.

3.1.2 Use of The resource builder

The loTResource Builder allows you to define your loTResources and automatically generate
the necessary loTResource code stubs. Services can then be built using these loTResources.
The following sections give examples of how a service can be described using the Resource
Builder tool.

Service Summary

This service will mapped to an loTResource which monitors in-door air quality, using a CO,
Sensing device in conference room. We start by providing the overall description, the Service
Summary.

2 http://www.upnp.org/

® Unified Service Description Language, http:/linked-usdl.org/

Version 0.6: Draft 11.05.2015

//”\\,/;\\

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform

o

File Edit Help

loT Resource Builder - CO2Device2.xml

Service Annotations | State Varables | Actions

Page 31 of 45

- o N

Title
Version
Date
Reference

Short Description

Long Description

CO2 Sensor Service

1

2015-02-23 E~

hittp /e thermokon.de /en/products/airquality /oo 2 Ac-wif04-co2 html

The Indoar Air Quality Service uses a C02 sensing device to measure the air quality in tems of
the CO2 levels.

Service built on output from the CO2 detection sensor LC-WRF04 CO2 (manufactured
by Thermolkon, Gemary)

The Indoor Air Quality Service uses a C02 sensing device to measure the air quality in tems bf
the COZ2 levels. The service provides two altemative measures of air quality,

- a numerical value in ppm (parts pper million) CO2

- as a ppm value range {IDAT - IDAL) which indicates air quality as: High { < 400 ppm), Mediim
(400-600 ppm), Moderate (600-1000) ppm, Low (= 1000 ppm).

Device technical details:

Cutput voltage 1x 0100000 W {(V), 1< 0,10V (V) (Kopie)
Measuring of | V: CO2

Power consumption max. 3W /6 VA

Measuring range CO2 0..2000 ppm

Measuring range temperature depends on used sensor (passive)
Accuracy CO2 £75 ppm oder 10% vom Messwert [bei 21 °C)

See reference for further device details

Figure 7: Service Summary description using the IoTResource Builder

The annotations are encoded in an XML vocabulary which will be associated to the
loTResource in the code generation process (see below).

The Service Summary description is shown in its corresponding XML encoding below.

<serviceAnnotations xmlns="IoT">
<name>Indoor Air Quality Service</name>
<version>1</version>
<date>2015-02-23</date>
<shortDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the

air quality in terms of the CO2 levels. Service built on output from the

CO2 detection sensor LC-WRF@4 CO2 (manufactured byThermokon, Germany)
</shortDescription>
<longDescription>

The Indoor Air Quality Service uses a CO2 sensing device to measure the air
quality in temrs of the CO02 1levels. The service provides two
measures of air quality,

- a numerical value in ppm (parts pper million) CO2

Version 0.6: Draft 11.05.2015

alternative

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform

Page 32 of 45

- as a ppm value range (IDA1l - IDA4) which indicates air quality as: High (
&1lt; 400 ppm), Mediim (400-600 ppm), Moderate (600-1000) ppm, Low

(&gt; 1000 ppm).

Device technical details:

Output voltage 1x 0..100000 V (V), 1x 0..10 V (V) (Kopie)
Measuring of , V: CO2

Power consumption max. 3 W / 6 VA

Measuring range C02 ©..2000 ppm

Measuring range temperature depends on used sensor (passive)

Accuracy CO2 +75 ppm oder 10% vom Messwert (bei 21 °C)
See reference for further device details
</longDescription>
<referenceUrl>

http://www.thermokon.de/en/products/air-quality/co2/1lc-wrf@4-co2.html

</referenceUrl>
</serviceAnnotations>

Figure 8: Service Summary XML

Actions

Each action (similar to operations/methods) of a service may also have their own annotations
specified. This example shows an action for reporting the air quality in ppm (parts per million)

CO, based on a standard for indoor air quality (IDA®).

Action Editor - GetlndoorAirQuality B

Action Name
|

Diescription

Reports indoor air quality expressed in IDA, see reference to standard

Refersnce
http://standards .cen eu/dyn waww. A 7p=204:110:0:::FSP_PROJECT:245538cs=1B50EAC

Argument List Add Argument
g Name airQuality
4 || ¥| Varable airQuality vl [
Effect List Add Effect
=

Figure 9: Action annotation

* http://www.aafeurope.com/en/155/en13779-standard

Version 0.6: Draft 11.05.2015

http://www.thermokon.de/en/products/air-quality/co2/lc-wrf04-co2.html

//”\\,/;\\

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 33 of 45

The corresponding XML follows. It also contains two additional actions for the service.

<actionmetadata xmlns="IoT">
<actionList>
<action name="GetIndoorAirQuality">

<description>
Reports indoor air quality expressed in IDA, see reference to
standard.

</description>

<referenceUrl>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP PROJECT:24553&
5 Cs=1B50EAC84642115F35A7D9F005762E46B
</referenceUrl>
<effects>

No effects reported
</effects>
</action>
<action name="GetCO2Level">
<description>
Reports indoor air quality expressed as level of CO2 in ppm
</description>
<referenceUrl></referencelrl>
<effects>
<effect>
<stateVariable></stateVariable>
<description>text explaining possible effect</description>
<referenceUrl></referencelrl>
</effect>
</effects>
</action>
<action name="TurnOffCO02Sensor">
<description>
Turns off the CO2 Sensor Device and returns the current CO2Level
</description>
<referenceUrl></referencelrl>
<effects>
<effect>
<stateVariable></stateVariable>
<description>
Device is turned off. Last measurement accessible in log.
</description>
<referenceUrl></referencelrl>
</effect>
</effects>
</action>
</actionList>

</actionmetadata>

Figure 10: Action annotation XML

As mentioned above, it also possible to describe any additional effects an action might have.
Note that these “effects” are not to be seen as hard dependencies between actions/ state
variables maintained by the service run-time, but rather as a way to document possible effects in
the application context.

In the example above (TurnOffCO2Sensor), the “effect” simply states that at (power) turn off,
the last measured value is available as an loTObservation from logged data.

Version 0.6: Draft 11.05.2015

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

VAN

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 34 of 45

Properties (State Variables)

The inputs/outputs of a service are represented by state variables associated with each of the
actions. The Air quality action above reports measurements to be interpreted according to a
standard for in-door air quality using intervals of ppm ranges.

State Variable - airQuality B

Name | zirQuality |
Type

String W

Event Logged
Unit of Measurement
IDA
Reference
http://standards cen eu/dynwww S Fp=204:110:0::::FSP_PROJECT 245534cs=1B50F
Description
Indoor air (IDA) quality in PPM invervals according to the EN13779 standard

Valueset Entries Add Entry
Value DAl 4 ¥ | X
Description (High} COZ2Level less than 400 PPM

WValue IDAZ 4 ¥ | X
Description (Medium) COZ2Level btw 400-500 PPM

Value IDAZ 4 ¥ | X
Description (Moderate) CO2Level biw 600-1000

Value IDA4 4 ¥ | X
Description (Low) CO2Level more than 1000 PPM

Valueset Reference

Coes

Figure 11: State variable annotation

The corresponding XML encoding for this State variable annotation is shown below.

<statevariablemetadata xmlns="IoT">
<statevariablelList>
<statevariable name="airQuality">
<IoTEvent>true</IoTEvent>
<!—checkbox Event: Generates IoT event when state changes -->

<IoTStored>true</IoTStored>
<!-- checkbox Logged:Store state changes automatically using storage
manager -->
<IoTUoOM>IDA</IoTUoM>

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 35 of 45
<!-- Valueset? - Unit of Measurement C, cm, kg....etc -->
<description>

Indoor air (IDA) quality in PPM invervals according to the EN13779
standard

</description>

<referenceUrl>

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP PROJECT:24553&cs=
1B50QEAC84642115F35A7D9F0RO5762E46B
</referencelrl>
<valueset>
<entry>
<value>IDA4</value>
<description>(Low) CO2Level more than 1000 PPM</description>
</entry>
<entry>
<value>IDA3</value>
<description>(Moderate) CO2Level btw 600-1000</description>
</entry>
<entry>
<value>IDA2</value>
<description>(Medium) CO2Level btw 400-600 PPM</description>
</entry>
<entry>
<value>IDA1</value>
<description>(High) CO2Level less than 400 PPM</description>
</entry>
</valueset>
<vsReferenceUrl></vsReferenceUrl>
</statevariable>

Additional variables here...
</statevariablelList>
</statevariablemetadata>

Figure 12: Annotations for State Variables

3.1.3 Components in the loTResource Builder
The loTResource Builder is built on two separate components, see Figure 13:

e The loTResource Builder GUI
e The loT Code Generator

Version 0.6: Draft 11.05.2015

http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B
http://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT:24553&cs=1B50EAC84642115F35A7D9F005762E46B

A
/H\ N
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 36 of 45

loT Resource Builder

[loT Resource Builder GUI]

loT Resource Description XML

A 4

<
v 10T Code Generator

Code Generationg XSLTs

s

Project with ready made code

Figure 13: IoTResource Builder Components

The loTResource Builder GUI creates an loTResource Description XML which is then sent to
the 10T Code Generator to create the code. The reason for this division is to make the 10T Code
Generator reusable for other tools, for instance the GUI could be replaced by a completely web
based interface but still using the same code generation.

The loTResource Description XML is based on the UPnP device XML but with some small
differences. Firstly the loTResources service description (SCPD) is in lined in the Device XML.
Secondly there is an envelope which carries some code generation meta data, see Figure 14.

<device>
<deviceType>urn:schemas-upnp-org:IoTresource:C02Sensor:1</deviceType>
<friendlyName>CO2Sensor</friendlyName>
<manufacturer>LinkSmart Open Source</manufacturer>
<manufacturerURL>

http://www.iotworldservices.com/wiki/iotworldserviceswiki/
</manufacturerURL>
<modelDescription>

CO2Sensor UPnP Device Using Auto-Generated UPnP Stack
</modelDescription>
<modelName>C02Sensor Device</modelName>
<modelNumber>X1</modelNumber>

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wiki/iotworldserviceswiki/

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 37 of 45

<productCode>C02Sensor-X1</productCode>
<servicelList>
<service>
<serviceName>C02SensorProject</serviceName>
<serviceType>urn:schemas-upnp-org:service:C02Sensor: :1</serviceType>
<serviceId>urn:upnp-org:serviceld:C02Sensor</serviceId>
<SCPD>
<specVersion xmlns="urn:schemas-upnp-org:service-1-0">
<major>1</major>
<minor>@</minor>
</specVersion>
<actionList xmlns="urn:schemas-upnp-org:service-1-0">
<action>
<name>GetCO2Level</name>
<argumentList>
<argument>
<name>C02Level</name>
<direction>out</direction>
<retval />
<relatedStateVariable>CO2Level</relatedStateVariable>
</argument>
</argumentList>
</action>
<action>
<name>GetIndoorAirQuality</name>
<argumentList>
<argument>
<name>airQuality</name>
<direction>out</direction>
<retval />
<relatedStateVariable>airQuality</relatedStatevariable>
</argument>
</argumentList>
</action>
<action>
<name>TurnOffC02Sensor</name>
<argumentList>
<argument>
<name>CO2Level</name>
<direction>in</direction>
<relatedStateVariable>CO2Level</relatedStateVariable>
</argument>
</argumentList>
</action>
</actionList>
<serviceStateTable xmlns="urn:schemas-upnp-org:service-1-0">
<stateVariable sendEvents="no">
<name>_ToTActionMetaData_</name>
<dataType>string</dataType>
<defaultValue>
<?xml version="1.0" encoding="utf-8"?>
<actionmetadata xmlns="IoT">
<actionList>

Actions Annotations

</actionList>

Version 0.6: Draft 11.05.2015

A

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 38 of 45

</actionmetadata>
</defaultvValue>
</stateVariable>
<stateVariable sendEvents="no">
<name>C02Level</name>
<dataType>i2</dataType>
</stateVariable>
<stateVariable sendEvents="no">
<name>_IoTResourceMetaData_</name>
<dataType>string</dataType>
<defaultValue>
<serviceAnnotations>

Service Summary
annotation

</serviceAnnotations>
</defaultValue>
</stateVariable>
<stateVariable sendEvents="no">
<name>_ToTStateVariableMetaData_</name>
<dataType>string</dataType>
<defaultValue>
<?xml version="1.0" encoding="utf-8"?>
<statevariablemetadata xmlns="IoT">
<statevariablelList>

State Variables
annotations

</statevariable>
</statevariablelList>
</statevariablemetadata>
</defaultValue>
</stateVariable>
<stateVariable sendEvents="no">
<name>airQuality</name>
<dataType>string</dataType>
</stateVariable>
</serviceStateTable>
</SCPD>
</service>
</servicelList>
</device>
</root>
</upnp>
</DeviceInfo>

Figure 14: Example of an IoTResource Description XML. Coloured rectangles represent the
annotation sections.

Version 0.6: Draft 11.05.2015

VAN

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 39 of 45
There are four specific tags in the Environment section that controls the code generation:

e CodeNameSpace: The namespace used for the code generated, usage depends on
target language.

e ProjectName: The name used for the resulting code project.

e (ClassName: Class name stem used for the generated classes for the loTResource.

e |oTResourceType: Decides which type loTResource code is generated, current possible
values are loTDevice, loTService and loTThing.

The actual code generation is performed by using XSLT transformations using the loTResource
Description XML as input. The set of XSLT transformation® create the output files that are part
of the resulting development project solution.

ﬂ CO2SensorResource - Microsoft Visual Studio [J ¥ | QuickLaunch (Ctrl+Q) P =
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP Stefan Paulsson -

00 Bt |9 s - o | e e
CCO2Sensor.cs A X n

[c¥] CO2SensorResource | #32 10TCO2Sensor.CCO25ensor «|® ccoasensor(string 10TID, string na = @dle-endm| "
Y

= 3 .
- namespace IsTCO25ansor =] Search Solution Explorer (Ctrl+") P
{ 257 Solution 'CO2SensorResource’ (1 proj
= g <summary> 4 CO2SensorResource
mary description for SampleDevice. b =W References

summarys

i Service Ref
= public class CCO2Sensor:IoTDevice Ervice References

3 32
{ 3 &4
//private UPnPDevice device; ¥ App.config

o5 app.manifest

= public CCO2Sensor(string IoTID, string name, string vendor, string deviceURN):bast B C* CCO2Sensor.cs
b € CCO2SensorDiscoveryManger.
b ¢ CCO2SensorPhysicalResourcel
[!
FriendlyName = "CO2Sensor”; 3 ! CCOESensorWebSemc? <3
Manufacturer = "LinkSmart Open Source”; b CO"-SE"SWREWU_"EME'”“
ManufacturerURL = “http://www. iotwor ldservices. com/wiki/iotworldserviceswiki/"; b ot DvCO2SensorProject.cs

ModelName = "C025ensor Device™;

ModelDescription = "CO2Sensor UPnP Device Using Auto-Generated UPnP Stack™;
//ModelURL = new Uri(""); -
A

Qutput

Show output from: | Build - E|e ==

13------ Rebuild All started: Project: C02SensorResource, Configuration: Debug Any CPU -- a
1>C: \Users\stefanp\Desktop\IoT_Tester\C02SensorResource\DvCO2SensorProject.cs(345,32,345,
1>C:\Users\stefanp\Desktop\loT_Tester\CO2SensorResource\Dv(02SensorProject.cs(356,14,356, ¥
4 4
Pending Changes Web Publish Activity Error List {80l Find Results 1 Find Symbol Results

=(n) &

EIEE Subversion Info

Package Manager C...

Ready

Figure 15: Development environment generated

Initially C# Visual Studio projects are supported as target environment. However, with the use
of XSLT this can be easily extended to support other languages such as java, swagger.

> See LinkSmart code repository https:/linksmart.eu/redmine/

Version 0.6: Draft 11.05.2015

https://linksmart.eu/redmine/

/”\ /A
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 40 of 45

3.2 loTResource Catalogue

The loTResource Catalogue discovers and keeps track of available loTResources in the network
and their service descriptions. It provides a REST and Web Service based interface to select and
retrieve data about the loTResources and their services.

As an example see Figure 16 below that shows which loTResources have been discovered on
the gateway “KURSAAL”, which handles several physical gateways (KURSAAL,
ELO2,CLEMONS) and which loT Services they offer. loTResources are discovered and
managed by the 10T Resource Catalogue.

kSt T Bevany e Catsunp e -0 _

3
A
i1
1

-

3

R R R AR R R R
TEFEENST

sdf7iEds1l]
AAE 3)

Figure 16: IoT Resource Catalogue

3.2.1 Catalogue Services and Actions

The loTResource Catalogue offers a number of services which can be listed using the following
REST-expression:

http://<catalogueendpoint>/services.

If you type this into a browser the result will be:

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

BRIDG_E D08.2: Integrated and Quality Assured BRIDGE platform Page 41 of 45

TR & hetp/7872.1601.. O ~ G L0

<?xml version="1.0"7>
<services>
<service>
<nsme>IoTservice</name>
</[service>
- <gervice>
<name>catalogue</name>
</[service>
- <gervice>
<npame>devicemeta</name>
</[service>
- <service>
<name>IoT</name>
</service>
</fservices>

Figure 17: Catalogue Services

Each service provides a number of actions that can be performed on the loTResource. The
catalogue service provides the main functionality of the loTResource Catalogue. You can list all
actions provided by a service with the following REST-expression:

http://<catalogueendpoint>/services/actions

The returned XML specifies the action and the arguments needed to call it:

& M BT N0MR 01 B « G D Catalog.. = | 3 Tarz6. >

<7l verson="LOM
<pctionl et wrrkon =" ch WPy vicw-1-0">
<action loTeryatation =" »
“rewre ~GeRADGabemmys < e -
Cagement i >
CHJUTIR>
LT Qetewaye < TanTe s
cabationoeuts Miractizo>
cotvals>
Pty

‘elde e
<JarpaTeat>
<l gurerne >
Jeutn >
Cection loTerrctaton ™
SO et rad L TResow ces <o
<orparsardlbt >
Cargurmene >
crmrwoarrorloTResoUrces e
Cdvecionreut< Mroction>
Crotvnl/ >

crbded

e >
<INpaTIEL>
«fargurren i »
<facthon>
<ymon IoTaenonyton="">
<o - DetleTResoW e </ fvnin >
<ugument) it >
<agaTen>
Cronmoressurceld /o>
“2iraction vin< [dyection>
<lelnetstnsVaratie > loTRessurceld </ tmessuevoratie>
A st >
Cargurne >
“rare rlaTResosrce raie -
CAveDonTeuts Myectizn>
I’I"W)
<rok bl >JoTR v >

<Jarpaneat>

o fargurrmriiot >
<Saction >

<amon oTarnoryson=""> v

. 2

Figure 18: Result of Resource Catalogue Query

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueservices.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/catalogueactions.png

\

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 42 of 45

Below is a short explanation of all available actions:
GetAllGateways
Returns all gateways known by the catalogue

GetErrorloTResources
Returns all loTResources that are in an error state, for instance that have disappeared from the
network without telling about it

GetloTResource
Argument: resourceld
Returns the SCPD for a specified loT Resource

GetloTResourcesAtGateway
Argument: gateway ID
Returns the SCPD file for all 10T Resources at a specified gateway

GetloTResourcesEndpoints
Returns the lotResourceld, FriendlyName and the localendpoint for all loTResources known by
the catalogue

GetloTResourcesEndpointsFromXpath

Argument: Xpath expression

Returns the lotResourceld, FriendlyName and the localendpoint for all loTResources known by
the catalogue that matches the xpath description

GetloTResourcesFromXpath

Argument: Xpath expression

Returns the SCPD file for all loTResources known by the catalogue that matches the xpath
description

RegisterResource
Register an loTResource directly not using UPnPDiscovery.

GetManualloTResources
Returns all loTResources that has registered themselves and not through UPnP

GetNumberOfloTResources
Returns the number of loTResources, UPnPDevices, ErrorResources

RemoveErrorloTResources
Instructs the catalogue to release and forget about the loTResources that are currently in the
error list

ReScan
Instructs the catalogue to issue a new M-SEARCH command to find new loTResources in the
network

ReStartCatalogue
Instructs the catalogue to forget about all loTResources and ErrorResources and issue a ReScan
command

Version 0.6: Draft 11.05.2015

/”\ /A
BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 43 of 45

3.3 loTResource Catalogue Browser.

IoT Resource Catalogue Browser provides a user interface to look and interact with 10T
resources in the network node. Basically it provides a user interface to the IoT Resource
Catalogue. The loT Resource Catalogue Browser can be used for looking at the service
descriptions and also to invoke actions in the service (If the service supports this)

Complete description examples and downloads of the 10T Resource Catalogue Browsers are
available at: http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-
browsers/.

When you double click on the executable it browser will first discover the loTResource
Catalogue in your local network. If you click on the catalogue name in the tree, you will see
three tabs to the right. The first tab shows you the number of loTResources this catalogue has
discovered.

LnkSimart 10T Réscure Catariogue - ol EN

Figure 19: Initial Windows IoT Resource browser window

The second tab shows the loTResourcelds and the endpoints to the different loTResources. In
case there are loTResources which are in some error state and therefore cannot be accessed,
they will be listed in the third tab.

k5ot 0f iauum e Catvager - okl

Figure 20: Second Tab with IoT Resources end points

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/
http://www.iotworldservices.com/wiki/iotworldserviceswiki/iotresource-catalogue-browsers/
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser1.png
http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser2.png

VAN

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 44 of 45

You can now expand the tree on the left. The gateway nodes correspond to different hardware
gateways (normally computers) in your network which hosts the loTResources. If you click on
one loTResource, you will see three tabsto the right. The firsttab (loT) lists the state

variables/properties that are specific for LinkSmart.

- LodSvwet LT Neuany e Catdiup e = U-

Figure 21: Expanded view

Version 0.6: Draft 11.05.2015

http://www.iotworldservices.com/wp-content/uploads/2014/12/cataloguebrowser3.png

"
\ .___f AN
\// \

BRIDGE D08.2: Integrated and Quality Assured BRIDGE platform Page 45 of 45

//
/;

4 Components in Open Source Public Repositories

This section will be extended in the final version since many components are still in the process
of being made available.

4.1 LinkSmart

Many of the LinkSmart extensions made in BRIDGE are already incorporated in the Open
Source release available at https://linksmart.eu/redmine/projects/linksmart-opensource.
Amongst the BRIDGE Developed components these are the most important ones made
available:

e The Service Catalogues

e Tunneling of large objects in the BRIDGE network.

e The possibility to tunnel all HTTP based communications through the BRIDGE Network
Manager, in order to provide support for REST based services.

e Modularized implementation to ease replacing and additions of new modules.

e |oTResource Tools

The list will be extended with the components that are still either under consideration to be
included or already in the process of being prepared for the Open Source release.

4.2 EVE

For the agent based parts of the BRIDGE platform many developed components have been
published in the EVE open source project: http://eve.almende.com/.
The Major EVE parts that have been created or extended within the BRIDGE project include:

e The XMPP transport layer

e The capability to run Eve agents effectively on Android mobile devices

e A push/pull combining "monitor" design pattern for robust communication

e Afactor 100 latency decrease on generic Eve calls, part of a scalability effort for large
scale resource simulation

e Aninnovative gossip based agent event publication design
o Afurther development of the CAPE personal agent model

Version 0.6: Draft 11.05.2015

https://linksmart.eu/redmine/projects/linksmart-opensource
http://eve.almende.com/

