Deliverable reference: Date: Responsible partner:

D05.2 30 April 2015 CNet Svenska AB

Bridging Resources and Agencies in Large-Scale Emergency Management

BRIDGE is a collaborative project co-funded by the European Commission within
the Seventh Framework Programme (FP7-SEC-2010-1)

SEC-2010.4.2-1: Interoperability of data, systems, tools and equipment
AN/ Grant Agreement No.: 261817
L Duration: 1 April 2011 — 31 March 2015

BRIDGE s e

Title:
BRIDGE Middleware
Editor(s): Approved by:
Peeter. Kool Dag Ausen
Classification:
Public

Abstract / Executive summary:
This deliverable describes the prototype D05.2 BRIDGE Middleware. The BRIDGE middleware
infrastructure provides an abstraction layer for the network-level infrastructure, allowing easy access
for higher-level components and GUI-layers. It also provides the means for managing the dynamic
environment where services can come and go.

Document URL: ISBN number: A
http://www.sec-bridge.eu/deliverables/... x, *

\ /\
LN _
BRIDGE D05.2: BRIDGE Middleware Page 2 of 44

/

Table of Contents

BRIDGE MiIAUIEBWALEcoviiiiiiiriiriieee ettt nnenne s 1
Lo (0] O] 1 (-] o £ SRS 2
WEESION HISTOTY ..ottt bbb bbbt b bbbt b e bbb ettt eenn e beanees 4
CONEFIDUTING PANTNEIS ..ot et r et b e e r e e nne e n e re e 5
LESE OF FIQUEES. ...ttt bbbt b bbbttt ettt e bttt e bt 6
LiSt OF ADDIEVIALIONS. ...ttt bbb nr e s 7
1 INEFOAUCTION ..ottt sb et b e bt e b bt e e bt e b b 8
2 OVBIVIBW. ...ttt R b h etk h R AR b R et h Rt R bt n et ere s 9
2.1 THE NETWORK MANAGERccitiiiiiiiiatrie it s e st s ettt e et e s e s ne e e s e e e e s nnnee e 9
2.1.1 VIFTUAE AGAIESS ..ottt bbb bbbt b e b 10
2.1.2 Network Manager COMPONENTSveiueereereriieeieesteeseessteeseesessseesseessesseessseesessessnseans 10
2.1.3 BACKDONE. ... 11
2.1.4 BAaCKDONE ROULETueiiiiieieeee st 11
2.1.5 NEtWOrK Manager COMEuuiiuiiiieiiieeiteesteesteesiteesteeste e s e e staesteesteeasbaesteesteesseeesbeesteesreeaneeans 12
2.1.6 Communication SECUIItY MANAGETcccuiiiiiiiiiiiiie ettt sb e seee e 12
2.1.7 1ABNLILY IMBNAGET ...ttt ettt ettt b e b e bt e bt e be e st e e enbeebeesbeennneanbeans 12
2.1.8 HTTP TUNNEIING. ...ttt bbbttt 12

2.2 SERVICE CATALOGUEeeuttiittiirteiee st sir ettt ettt et nbe e sh et nb e sae e as e b e e nne e st e e nneennn s 14
2.2.1 The Network Manager Service CatalogUe.cueririiiiiiiiiiicie s 15
2.2.2 10T RESOUICE CAtAlOGUEc.eeiiitiiiieitiiiie ittt bbbt 17

2.3 THE SHARED DATASPACEcutiteitiiteeiee sttt et 20
2.3.1 The Shared DataSPace PrOXYcceeiveeueerteeseesieasseesteessessseesseessesssseassesssssssssssessesssssssneans 21

2.4 ON-SITE STORAGE SERVICEccuviiiiiiiiiiiiiiiie ettt st 22
2.4.1 BRIDGE LiNK FOIMAL... ..ottt sttt beesbeesie e ne e 22
2.4.2 USAQE OF ON-SIte STOFAQE . .eoviiieiiiiiieiie ittt e e e b e e sbeesieesnne e 24

2.5 TRANSFORMATION SERVICESvtiutiiiieiiriaireeiee sttt sttt ettt ettt sne et nneesnns e nneennee s 25
2.5.1 FOrmat TranSfOrMAaLIONcoiviiiiiiiiiie ittt 25
2.5.2 Protocol TranSfOrmMationcceoiiiiiiiiiiiiiieee s 26

2.6 AGENT INTEROPERABILITY ...titeiitet ettt sttt ene et nee e s e 27

3 SOTtWAre COMPONENTS ...ttt bbbttt bbbt e bt e nbe e 29
3.1 NETWORK MANAGER SERVICE CATALOGUE APlccciiiiiiiiiiiiii e 29

Version 1.2: Final 30.04.2015

/”\ N
LANZIN _
BRIDGE D05.2: BRIDGE Middleware Page 3 of 44

3.2 10T::I0TRESOURCECATALOGUE CLASS REFERENCEcciiiviiiiiiriiiiiisinceiree s 32
3.3 SHARED DATASPACE CLASS REFERENCEccviiiiiiiirieiieniie sttt ettt 38
3.4 ONSITESTORAGE CLASS REFERENCE0iiuttetieriieiirieie ettt ettt sre e snne e 40
3.4.1 OnSiteStorage::Filelnfo Class REfErENCEcccovviiiiiiiiiiiie e 40
3.4.2 OnSiteStorage::OnSiteStorage Class REfErENCEccvvvviiiiiiiieie e 42

Version 1.2: Final 30.04.2015

"
\ .___f AN
\// \

BRIDGE D05.2: BRIDGE Middleware Page 4 of 44

/i

/

Version History

Version® Description Date Who
0.1 Initial TOC 7.11.2011 | Peeter Kool
0.2 Agent Platform Interoperability + FIPA 14.3.2012 | David Mobach
0.3 AgentScape + Dataspace 15.3.2012 | Reinier Timmer
0.4 CHAP Eve added, created first e-room 22.4.2012 | Hongliang Guo,
version Peeter Kool
0.5 Added Network Manager section 13.10.2014 | Mark Vinkovits
Peeter Kool
0.6 Added Service Catalogue section 23.10.2014 | Mark Vinkovits
Matts Ahlsen
Peeter Kool
0.8 Added On-Site Storage and Transformation 22.02.2015 | Peeter Kool
Services
1.0 Version ready for peer-review 24.04.2015 | Peeter Kool
11 Addressed comments from peer review by 29.04.2015 | Peeter Kool
Sander van Splunter.
1.2 Addressed comments from peer-review by 30.04.2015 | Peeter Kool

Antoine Pultier

Version 1.2: Final 30.04.2015

A

BRIDGE

D05.2: BRIDGE Middleware

Contributing partners

Page 5 of 44

Matts Ahlsén

CNet
C Danderyd matts.ahlsen@cnet.se
‘ ' Sweden Peeter Kool
Peeter Kool@cnet.se
UNIKLU Christian Raffelsberger

"' ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

Alpen-Adria-Universitat Klagenfurt
Klagenfurt, Austria

christian.raffelsberger@aau.at

\

~ Fraunhofer
FIT

FIT

Fraunhofer-Institut fir Angewandte
Informationstechnik

Sankt Augustin, Germany

Andreas Zimmermann
andreas.zimmermann@fit.fraunhofer.de
Mark Vinkovits
Mark.vinkovits@fit.fraunhofer.de

SAAB Group
Sweden

Andreas Carlsson
andreas.ac.carlsson@saabgroup.com

Thales R&T Nederland
Delft
The Netherlands

David Mobach
david.mobach@d-cis.nl
Reinier Timmer
reinier.timmer@d-cis.nl

Almende
Rotterdam
Netherlands

Ludo Stellingsdorf
ludo@almende.org

Version 1.2: Final 30.04.2015

mailto:matts.ahlsen@cnet.se
mailto:Peeter%20Kool@cnet.se
mailto:andreas.zimmermann@fit.fraunhofer.de

/V\ N
LN/

BRIDGE D05.2: BRIDGE Middleware Page 6 of 44

List of Figures

FIGURE 1: BRIDGE SYSTEM OF SYSTEMS CONTEXT .. .ciiiiiiiiiiitttttistttsssisiinaiieeseeeessesstessssssssssssssssssssseaaeeeeessseesien 8
FIGURE 2: BRIDGE P2P INETWORK ..utttttttttiiiiiiiiieeeeieee i e ettt ttttaatb bbbt s e st s ssaaeseseasssesssassss s s bbb bbbt s sesseeeseassseasenasens 10
FIGURE 3: ARCHITECTURE OF THE NETWORK IMANAGERctvtttttittiiiiiiiiiieiiieeeeseieestsesisssstssssssssssissesssesssssssesssssnin 11
FIGURE 4: HTTP TUNNELING EXAMPLE ...uuuuiiiiiiieeeeeeeeee i ettt ettt bttt s e s s s s e e eeseeeaasseatsasab e e e bbb bbb s s esseeeesessseasenanees 13
FIGURE 5: THE SHARED DATASPACE PROXY w..eiittitieiiiietitittettteeatsaatbbaes s s s st ssseaesesaastsetttsstts s s bbba b sssesseesasassseaseennees 22
FIGURE 6: BRIDGE LINK SCHEMA ... uttttuttteiietisteeeeeeeeetttttttesssesssssssssssssasssssssessssssastsssssesssssssssssssss s sssessssesseesreerreemee 23
FIGURE 7: BRIDGE LINK INSTANCE ..utttuuuteiietssteeeeeeeeestttttsesssessssssssssssssessssssssssssssssssssesssssssssssssssresseeesseerreerree 23
FIGURE 8: EXAMPLE OF BRIDGE ON-SITE STORAGE DEPLOYMENT 1uuuuiiiiiiiiiieeeiiieeiieeieeestrsssssinissesseeeseessssssssssens 24

."\ /\ \
'\._.-'f AN
‘GE D05.2: BRIDGE Middleware Page 7 of 44

/|

/

BRID
List of Abbreviations
DLNA Digital Living Network Alliance
EDXL Emergency Data Exchange Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
JXTA P2P protocol https://jxta.kenai.com/
P2P Peer to Peer network
REST Representational State Transfer
SCPD Service Control Protocol Description
SOAP Simple Object Access Protocol
SSDP Simple Service Discovery Protocol
UPnP Universal Plug and Play
WSDL Web Services Description Language
XSLT Extensible Stylesheet Language Transformations

A AN \” \

/]

/

BR!DCE D05.2: BRIDGE Middleware

1 Introduction

This report describes the prototype deliverable D5.2 Middleware which is the result from Task 5.2
Middleware. The aim of the task was to design and develop the middleware infrastructure for BRIDGE
networks, which provides an abstraction layer to the network-level infrastructure and interfaces to higher-
level components and GUI-layers. The work performed in this task has taken into account the results
achieved in the HYDRA project: The HYDRA middleware was extended and adapted to meet the
BRIDGE requirements elicited in WP2. Note that the HYDRA middleware has been renamed to

LinkSmart, and will be referred as such in the remainder of this deliverable.

Mobile Sensors

Fixed Sensors

Victims

¢

ER teams

|8

gw

Training

= 4]

Orchestration
Triggers
Transformation &
Eventing

Workflow
Management

Communication

Media Publish &

Messaging Streaming Subscribe

Network Management

Data- / Model Management

Service

Tagging | Identification | o008

Network Shared On-Site
Information || Dataspace Storage

\

P

Experts

1snu] 9 Aunoag

Master-Table
Command & Control

b=

Hospitals

Figure 1: BRIDGE system of systems context

The main part of this deliverable deals with the extensions made to the LinkSmart components and new
components that have been created to support the very dynamic environment where the BRIDGE
middleware will be deployed. These components have been used in the different demonstrations providing

the glue in-between the applications running on top of the BRIDGE middleware.

There is also a section, section 2.6, dedicated to the interoperability of the agent-based parts of the

BRIDGE platform.

BR_!D(iE D05.2: BRIDGE Middleware Page 9 of 44

2 Overview

There are five main parts in the BRIDGE middleware which provide the virtualisation of the BRIDGE
network as well as the means to provide a framework for managing a very dynamic environment:

The Network Manager that provides the means to be able to communicate in between services.
The Service Catalogue that provides information about the actual services available at a given
time in the network. In the BRIDGE network we use two different means for searching
depending on situation.

The Shared Dataspace that provides services for storing and distributing information in the
network, in addition it provides functionality for eventing.

The On-Site Storage that provides a generic means for providing all sorts of information on the
BRIDGE network on a retrieve if needed basis.

The Transformation Component provides reusable templates in for transforming in-between
formats and protocols.

The following subchapters describe these parts and illustrate their usage with examples. The components
which are extensions to LinkSmart are already published on the LinkSmart source repository. Finally there
is an appendix with code documentation of the most important parts.

2.1 The Network Manager

The BRIDGE Network Manager is based on LinkSmart Network Manager. In the BRIDGE project the
code was refactored and new functionalities were added. Among the most important additions are:

The Service Catalogues

Tunneling of large objects in the BRIDGE network.

The possibility to tunnel all HTTP based communications through the BRIDGE Network Manager,
in order to provide support for REST based services.

Modularized implementation to ease replacing and additions of new modules.

The BRIDGE network consist of a set of Network Managers that form a private secured P2P network with
its own addressing space see Figure 2:

L \)

BRIDGE Network

-

[Network Manager:

BRIDGE Node 1
‘/Service

|
\@Io?

BRIDGE P2P Network

4 N\ e

Network Manager: Network Manager:

//J\ BRIDGE Node 2 J,,\ RIDGE Node 3
‘J Service\]—/ ’/Servici

|\ Catalogue | Catalogue

Figure 2: BRIDGE P2P Network

Below we describe how communication is done by the services and subsequently we describe the usage of
the Service Catalogue. But first we look at the individual components within the Network Manager itself
but in order to understand the components we start by explaining the concept of a Virtual Address.

2.1.1 Virtual Address

The Virtual Address object contains the address that each registered service has within the BRIDGE
network. In the BRIDGE network each service endpoint is identified by a 32-byte long Virtual Address
that has the following format: contextID-3.contextID-2.contextID-1.servicelD e.g.:
0.0.0.8248725583067352822.

The Virtual Address is used to access and invoke the service, it also keeps the IP endpoint hidden to
ensure privacy and security of the service.

Virtual Address assignment is done automatically by the Network Manager when developers register their
web services to it.

2.1.2 Network Manager Components

The Network Manager is a plug in based architecture where with well-defined components that have strict
interfaces. These interfaces also provide the possibility for adding functionality without interfering with
the rest of the code, or even completely replace one of the components. The following subchapters will
provide a description of the modules and their functions. The overview of the architecture can be seen in
Figure 3.

10

A\ A\
/V\ . \

1]

sendlpataSynch/sendDataAsynch g |

broadcastData registerService 7|
NetworkManagerCore

receivelpataSynch/receiveDataAsynch getServiceByAttributes

IdentityManager

removeService

getConnection

get&e{umyPFotocol S:]

P
getSecunitys rope..?ﬁs.nunlcatlonSecurityManager

r
|
|
|
: createConnection ConnectionManager
|
|
|
|

r——— - ——

sendDataSynch/sendDataAsynch 3:]

receiveDataSynch/receiveDataAsynch BackboneRouter

addRoute

TeTeT

sendDataSynch/sendDataAsynch $:l

receiveDataSynch/receive DataAsynch Backboie

getSecurityTypesRequired

Figure 3: Architecture of the Network Manager

2.1.3 Backbone

Backbone bundles are responsible for handling the physical channel over which messages are sent. The
backbone has to handle the synchronous and asynchronous nature of the communication as for the rest of
the application backbone calls should always be handled asynchronously. How broadcasting and
multicasting is done is also handled internally and with best effort. The Backbone holds a routing table to
pair Virtual Addresses to physical Ids. The physical Ids should never leave the Backbone except for
presentation purposes. The Backbone must resolve by itself how to retrieve Virtual Addresses from sent
packages. The current implementation uses JXTA as the low level communication P2P implementation.

2.1.4 Backbone Router

The BackboneRouter is holding references and managing several Backbones. The BackboneRouter
perform the mapping of a Virtual Address to a Backbone. The BackboneRouter offers methods to register
and unregister routes. It does this also automatically by storing the Virtual Address to the Backbone its
message came from. The NetworkManagerCore invokes the BackboneRouter to register route entries, i.e.
a specific backbone implementation (e.g. JXTA, SOAP) mapped to an endpoint. In case the indicated
backbone is not available yet, the BackboneRouter registers potential routes. Those potential routes can
become active routes as soon as the BackboneRouter was able to bind the proper backbone
implementation. If the backbone is unbound from the BackboneRouter the RouteEntry is removed from

11

BR!D(iE D05.2: BRIDGE Middleware Page 12 of 44

the route cache. In future, an application might be able to assign more than one route entry to one Virtual
Address, e.g. a REST WS endpoint could be registered in addition to a SOAP WS endpoint.

2.1.5 Network Manager Core

The Core implements the interfaces of the NetworkManager, which is the entry point to a LinkSmart
network. It is the connection bundle between the different modules as it forwards requests coming to it to
the destination. It has a ConnectionManager that holds references to Connections, which process data to
send over the network. This includes security operations, compression, encoding, etc. The
NetworkManagerCore should be kept as simple as possible and logic should be put into external modules.

2.1.6 Communication Security Manager

The CommunicationSecurityManager provides implementations of SecurityProtocol objects, which can be
used for securing communication. Security for a connection is established by assigning a SecurityProtocol
object to a Connection object. The CommunicationSecurityManager holds references to actual
implementation bundles that implement the security scheme. This means the security can be easily
exchanged even in run time.

2.1.7 Identity Manager

The IdentityManager is responsible for generating Virtual Addresses and for pairing Virtual Addresses to
identities. An identity is independent from the Backbone it uses. This means that the ldentityManager
should only see the application level Virtual Address identity and nothing else. A Virtual Address is in
general an address and a set of attributes. What these attributes are is responsibility of the IdentityManager
implementation.

2.1.8 HTTP Tunneling
An important concept in the network addressing is the usage of the HTTP tunnel provided by the Network
Manager to invoke and access services on the BRIDGE network.

In the P2P overlay network of the BRIDGE network every node only communicates with its local
NetworkManager. To ease the access to services of the NetworkManager, HTTP tunneling is provided
allowing access between services over generic endpoints using Virtual Addresses.

12

N 1 \

LN/

BRIDG

/]

D05.2: BRIDGE Middleware Page 13 of 44

HTTP Tunneling

metwork Manager:

BRIDGE Node 1
@rvice

Catalogue

BRIDGE P2P Network

/ 4: Forward Call /
LNEtWOFk Manager: Network Manager:
BRIDGE Node 2 — BRIDGE Node 3
/Service \K

‘ 7: Return Result Service
Cataloguy

{
3: Call Service B
Using HTTP Tunnel

Catalogue

6:Return Result

1:Find Service B 5: Call Forwarded

2: Virtual Address
for Service B
8: Result returned

Service A Service B

Figure 4: HTTP Tunneling example

A simple example of a service invocation is shown in Figure 4, where Service A wants to invoke Service
B. The following are the basic steps that need to be followed:

1. Find the Virtual Address for Service B: This is done by asking the service catalogue for a specific
service, see section 2.2.

2. Ifthe service is found in the catalogue the Virtual Address will be returned.

3. Call Service B by creating the HTTP tunneling URL using the Virtual Address. If it is a Web Service
that is invoked the endpoint for the Web Service Client is changed to the HTTP tunneling URL. If
itis REST or other HTTP based call the tunneling URL can be used immediately. (The format of
the Tunneling URL is explained in the following section)

4. The Network Manager forwards the call including the data to the Network Manager that has
Service B using the P2P network.

5. Finally the call is forwarded to Service B supplying the data and any necessary headers.

13

6. Service B returns the data in the same way as usual.

7. The Network Manager returns the result to the invoking Network Manager using the P2P
network.

8. Finally the result is returned to Service A.

The special code necessary to achieve this in Service A is that it needs to resolve Service B in the Service
Catalogue, create the end point and change the Web Service Client endpoint. Service A only needs to
register its service in the Service Catalogue. All other interactions and code is the same as if the services
are addressed directly, i.e. all standard tools for creating Web Services/REST servers and clients can be
used with HTTP tunneling.

Tunneling URL specification

The tunneling URL always begins with the local NetworkManager Address, port and the path
/GRANDTunneling. For instance http://127.0.0.1:8082/GRANDTunneling. There are two basic ways to
create the rest of the URL, one when the Virtual Address is known and one where the URL contains a
Service Catalogue query.

Define recipient explicitly

The first most common case is when the URL is built using a known Virtual Address, i.e. it has been
retrieved using the service catalogue. In this case the URL follows the following format:

http://NetworkManagerAddress:Port/GRANDTunneling/senderAddress/recipientAddress

o senderAddress: The Virtual Address of the sender of the message. Alternatively one can use 0
which basically means anonymous sender
o recipientAddress: The Virtual Address of the recipient

Define recipient by attributes

It is also possible to have the NetworkManager execute a service search over the P2P network by
providing the search attributes in the URL. The generic format for this type of URL is as follows:

http://NetworkManagerAddress:Port/GRANDTunneling/senderAddress{/default}{/1}?2

o {}are optional parameters.

o senderAddress: The Virtual Address of the sender of the message. Alternatively one can use 0
which basically means anonymous sender

e /default: if there are multiple options the first one should be selected. If this part is missing and
there are multiple options an error is returned

e /1:additional URL aimed for the registered service

e 2: query of searchable attributes like description="calculator"&sid="eu.bridge.eventmanager" et
c. These attributes are the ones defined in the Network Manager Service Catalogue, see 2.2.1.

2.2 Service Catalogue
In the BRIDGE middleware two types of service catalogues exist that can be used for finding services:

14

http://127.0.0.1:8082/GrandTunneling

e The Network Manager Service Catalogue, which is synchronized in-between all the Network
Manager nodes.

e The loT Resource Catalogue that contains more metadata and annotations of the services
available.

The reason for having two separate catalogues is performance, both for bandwidth as for lookup time.
Secondly each satisfies two distinct usage scenarios. The main usage scenario for the Network Manager
Service Catalogue is when the client knows exactly which type or instance of a service it wants to invoke,
i.e. when it is known at design time what service is to be invoked. The main usage scenario for the IoT
Resource Catalogue is when the client want to resolve services available in run time and invoke them
dynamically, i.e. it will use the metadata and service description to decide which service to invoke.

2.2.1 The Network Manager Service Catalogue

This service catalogue has always to be used when invoking services since all service invocations require
that Virtual Address of the invoked service is known. The catalogue is a simple attribute based description
of the service itself that can be searched. There are only two attributes that are mandatory and one
additional that is standardized but not mandatory:

o DESCRIPTION: The description of the service as a string, for instance
SharedDataspaceThales:WebService

e SID: The service identity, for instance urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1, this
attribute describes which interface/service is implemented. Several instances of services with
the same SID can coexist in the BRIDGE network.

o PID(Optional): Is a BRIDGE network unique id for this service. Useful for accessing a specific
instance of a service.

Apart from these attributes one can define any other suitable attributes when registering the service, see
Listing 1 below where HOST_NAME and START_TIME are added.

15

BRINGE __ D05.2: BRIDGE Middleware Page 16 of 44

//Connect to the Service Catalogue

ServiceCatalogue.NetworkManager sc = new ServiceCatalogue.NetworkManager();
//Using the local network manager

sc.Url = "http://localhost:9090/cxf/services/NetworkManager";

//Using the local network manager

ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[5];
ServiceCatalogue.Part p = new ServiceCatalogue.Part();
//Create the DESCRIPTION (Mandatory key)

p.key = "DESCRIPTION";

p.value = "S2D2SDevice:StaticWS";

parts[@] = p;

//Create the SID (Mandatory key), Service ID

p = new ServiceCatalogue.Part();

p.key = "SID";

p.value = "urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1";
parts[1] = p;

//Create the PID (Optional key), Persistent ID. Needs to be a unique name on
the BRIDGE network.

p = new ServiceCatalogue.Part();

p.key = "PID";

p.value = "my unique id";

parts[2] = p;

//Examples of additional keys

p = new ServiceCatalogue.Part();
p.key = "HOST NAME";

p.value = Environment.MachineName;
parts[3] = p;

p = new ServiceCatalogue.Part();
p.key = "START TIME";

p.value = DateTime.Now.ToString(); ;
parts[4] = p;

//Make the registration
ServiceCatalogue.Registration rid = sc.registerService(parts, m_wsendpoint,
"eu.linksmart.network.grand.impl.GrandMessageHandlerImpl");

HID = rid.virtualAddressAsString;
System.Console.WriteLine("Virtual Address:" + HID);

Listing 1: Example of service registration in C#.

The main usage of the Network Manager Service Catalogue is to provide a simple and efficient way of
finding services when the caller knows what service it wants to find and then invoke. It is important to
note that the Network Manager Service Catalogue responds always based on the services currently
available and available to reach. If the BRIDGE network node becomes detached from the other nodes it
will only contain the locally accessible nodes. But as soon it reaches other nodes they will synchronise so
that all services on the other BRIDGE nodes are available. This provides the flexibility for applications to
determine what services they can call at a given moment making it possible to perform graceful
degradation.

16

L A\

2.2.2 loT Resource Catalogue

The 10T Resource Catalogue provides the means to store more elaborate metadata regarding the services
compared to the meta-date stored in the Network Manager Service Catalogue. The information in the 10T
Resource Catalogue is not synchronised in-between BRIDGE network nodes and the loT Resource
Catalogue has to be found using the Network Manager Service Catalogue.

The loT Resource Catalogue uses service descriptions that are expressed in an extended version of SCPD
(Service Control Protocol Description), which is the standard for service descriptions in DLNA/UPnP. An
example of the SCPD description is shown below in Listing 2.

The reason for using the extended SCPD format is that it is well defined, used for service discovery, and
that it is possible to describe services independently of their implementation. These properties enable to
describe REST based services which do not really have any established formal description language.

17

A

BRIDGE DO05.2: BRIDGE Middleware Page 18 of 44

<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
<major>1</major>
<minor>@</minor>
</specVersion>
<device>
<deviceType>urn:schemas-upnp-org:IoTdevice:SharedDataSpace:1</deviceType>
<gateway xmlns="IoT">AIRBUS</gateway>
<status xmlns="IoT">web service initiated</status>
<wsendpoint
xmlns="IoT">http://192.168.9.96:8081/S2D2SDevice/S2D2SService</wsendpoint>
<virtualAddress xmlns="IoT">128.5151.99292.22222</virtualAddress>
<networkmanager xmlns="IoT" />
<friendlyName>S2D2SDevice</friendlyName>
<manufacturer>BRIDGE Integration Meeting</manufacturer>
<manufacturerURL>http://wwwcnet.se</manufacturerURL>
<modelDescription>Proxy for S2D2s</modelDescription>
<modelName>S2D2s</modelName>
<modelNumber>1</modelNumber>
<UDN>uuid:caae98le-cflf-4cf5-bcc7-6849b45144b2< /UDN>
<servicelList>
<service>
<serviceType>urn:schemas-upnp-org:service:shareddataspace:1</serviceType>
<serviceId>urn:upnp-org:serviceld:shareddataspace</serviceId>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
<specVersion>
<major>1</major>
<minor>0</minor>
</specVersion>
<actionList>
<action IoTannotation="">
<name>ListSubscriptions</name>
<argumentList>
<argument>
<name>subscriptions</name>
<direction>out</direction>
<retval />
<relatedStateVariable>Subscriptions</relatedStateVariable>
</argument>
</argumentList>
</action>
</actionList>
<serviceStateTable>
<stateVariable sendEvents="no">
<name>Subscriptions</name>
<dataType>string</dataType>
</stateVariable>
</serviceStateTable>
</scpd>
</service>
</servicelList>
</device>
</root>

Listing 2: Example of a service description in SCPD

18

Y V N\
/ \ /;
/ \ /,

There are two ways to register an loTResource, i.e. service, with the IoT Resource Catalogue:

e UPnP Discovery using SSDP and SCPD
e SELF Registration

If an loTResource supports the UPnP Protocol the loTResource will register automatically with the loT
Resource Catalogue. If a service is integrated into the BRIDGE network using the developer tools this
information will be created mostly automatically and the service will be discovered dynamically by UPnP
as well.

However, it also possible to manually register the service in the 10T Resource Catalogue by using the
RegisterResource action of the catalogue service of the loTResourceCatalogue.

loTResource Query Language

The loTResource Catalogue provides a query language for finding loTResources and their services. This
query language is based on the XPath language® for querying XML documents. The queried XML
documents are loTResource Description files which are based on the SCPD (Service Control Protocol
Description) from the UPnP-standard. The loTResource Catalogue takes an XPath expression and applies
it to the SCPD document of the loTResources. The loTResources that matches the XPath expression are
then returned.

loTResource retrieval
The XPath querying can be used directly in the REST URL.:

http://<catalogueendpoint>/<xpathexpression
for example,
http://<catalogueendpoint>//UPnP: serviceType [.=’urn:schemas-upnp-org:service:shareddataspace:1’]

returns all loTResources that of the catalogue at that support the service “urn:schemas-upnp-
org:service:shareddataspace:1”

http://192.168.9.15:44441/* List all available resources

http://192.168.9.15:44441//UPnP:serviceType [.=' urn.schemas- List all shared dataspace
upnp-org.service.:shareddataspace.1’] services known to the
catalogue

http://192.168.9.15:44441//upnp:device[upnp:manufacturer="CNet | List all resources from
d manufacturer CNet

http://192.168.9.15:44441//upnp:device[upnp:manufacturer="CNet | List all resources from
1[UPnP:serviceType [.=' urn.:schemas-upnp- manufacturer CNet that are

2 http://www.w3schools.com/xpath/

19

http://192.68.1.97:40678/*
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

Y V N\
/ \ /;
/ \ /,

BR!D(;E D05.2: BRIDGE Middleware Page 20 of 44

org:service:shareddataspace.:1”) shared data space services

All the methods are available in the WebService interface as well. The full documentation for the loT
Resource Catalogue service interface is in section 3.2.

2.3 The Shared Dataspace

The main purpose of the Shared Dataspace is to provide common storage within the BRIDGE network
and also to provide a publish/subscribe based service for distribution of data as well as events. The actual
implementation of the shared dataspace in BRIDGE is called S2D2S.

The S2D2S distributed dataspace has a relatively simple interface for publishing and retrieving data. The
dataspace offers a mechanism to persist and forward data using a variety of infrastructures.

Depending on how the dataspace is configured, there may be one or more entry points to the dataspace. In
the BRIDGE middleware, each S2D2S entry point is represented as a LinkSmart virtual device and offers
access to the publish/subscribe API of S2D2S. Each cluster or subnet may have a dedicated entry point
device to provide access to users of LinkSmart on the same network. However, internally these entry
points could all be connected over the LinkSmart infrastructure.

From a user perspective there is not much difference between accessing one entry point or the other: the
API will look exactly the same. However, the distribution of data may vary between clusters, so that
actual data that can be seen could differ between entry points.

In order to ensure interoperability between different users of the dataspace (i.e. the agent platforms and
other supporting systems) S2D2S offers a REST API based on JSON-RPC. This API is accessed via
LinkSmart using a binding to a virtual S2D2S device. The REST API supports the following operations:

Method Description Parameters
Publish Publish content to a specific topic e String topic: topic to publish data

e String contentType: type of data to
publish

e String paylLoad: data to publish in
S2D2S

e String metadata: Additional data
describing the payload

e String persist: If true the data will be
stored, if false the data will not be
qguery able. False is used when one
only wants to use publish/subscribe.

e String itemld: If supplied this will
replace the stored value of the
instance with itemld.

20

http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

L A\

subscribe Subscribe to a specific topic. e String topic: topic to subscribe

e String url: callback URL address for
notifications

e String filter: Filter on specific attributes

or content.

unsubscribe Unsubscribe a specific subscription e String subscriptionid

Query Query a topic for specific content e String topic: the topic to search for
data

e String filter: Filter on specific attributes

or content.

list_subscriptions | Return a list of all active .

subscriptions.
removeByQuery | Remove specific content from a e String topic: the topic to search for

specific topic. data to be deleted

e String filter: Filter on specific attributes
or content for the deletion.

Table 1: S2D2S operations

These operations can all be accessed via JSON-RPC requests. The operations should be specified in the
“method” fields and the parameters should be placed in the “params” map:

subscribe: registers an endpoint that will be notified when data changes

"method": "subscribe”,
"params": {
"topic": “App.Bridge.Some.Topic”
"url™; "http://linksmart.address/callback™
}
}

The publish method writes data into a topic. If there are any clients that used the subscribe operation for
that particular topic, a notification of the new data is pushed to the URL of each subscribed user. Other
users may use the query operation to inspect the topics periodically. This will enable users to search
through all data (if it was persisted and has not been removed yet).

2.3.1 The Shared Dataspace proxy

A proxy was developed to make the S2D2S part of the BRIDGE network. The proxy enabled the
registration of S2D2S in the service catalogue as well as the managing of the creation of HTTP tunneling
URLs, see Figure 5.

21

Y V N\
/ \ /;
/ \ /,

BR!D(;E D05.2: BRIDGE Middleware Page 22 of 44

Shared Dataspace Node

YN

Network Manager

\ ‘w‘/Service
; |\ Catalogue
‘K

Notifications to subscribers

Direct REST calls

S2D2s Service S2D2S Proxy

e/

Figure 5: The shared dataspace proxy

The shared dataspace proxy called S2D2S Proxy registers the services in the Service Catalogues, both its
own services as well as the direct REST interface to the S2D2s. This makes it possible for clients directly
to find the REST service in the service catalogue and to invoke it using HTTP tunneling, thus bypassing
the proxy.

The important part of the proxy is to automate the usage of the BRIDGE P2P network tunneling. Any
client making a subscription provides its virtual address to the proxy that then creates the callback URL
pointing to correct BRIDGE network tunnel endpoint. This means that all notifications to the subscribers
go directly to the Network Manager for tunneling without needing to pass the proxy, see Figure 5.

For the actual documentation of the Shared Data Space proxy class see section 3.3.

2.4 On-Site Storage Service

The On-Site Storage Server provides a generic way of publishing data as links in the BRIDGE network,
i.e. this enables the publication of larger pieces of data, such as images, without putting additional load on
the BRIDGE network. Data will not be transmitted before somebody actually requests it.

The On-Site Storage Service uses the BRIDGE link format to express links.

2.4.1 BRIDGE Link Format

The BRIDGE link format is intended to be used when distributing links to be used for access to data that
could be retrieved via the BRIDGE network.

22

/V\ N
W I I _
BRIDGE D05.2: BRIDGE Middleware Page 23 of 44

The format is designed using a very simple schema. This allows a client to have multiple link instances to
the same target data resource but in possibly different resolutions or formats (depending on target data

type).

<xs:schema xmlns:bridge="urn:bridge:link" "unqualified"
"qualified"
"urn:bridge:link" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element "Links">

<xs:complexType>
<xs:sequence>
<xs:element "unbounded" "Link">
<xs:complexType>
<xs:sequence>

<xs:element "Url" "xs:string" />

<xs:element "Size" "xs:unsignedint" />

<xs:element "Mimetype" "xs:string" />
</xs:sequence>
<xs:attribute "description” "xs:string" "optional" />

</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 6: BRIDGE Link schema

One Link consists of a Url that can be used to retrieve the data, Size in bytes of the data, Mimetype of the
target data and an optional description attribute. This makes it possible to create a link that contains
multiple resolutions and data formats and it is up to the consumer to decide if and what to retrieve from
the source.

<bhridge:Links xmIns:bridge="urn:bridge:link">
<bridge:Link "Full resulotion">
<bridge:Url>http://127.0.0.1:8082/GRANDTunnel/0/122388338/0/x033282t7</bridge:Url>
<bridge:Size>58937392</bridge:Size>
<bridge:Mimetype>image/png</bridge:Mimetype>
</bridge:Link>
<bridge:Link "Medium resulotion">
<bridge:Url>http://127.0.0.1:8082/GRANDTunnel/0/122388338/0/x033232t7</bridge:Url>
<bridge:Size>50883</bridge:Size>
<bridge:Mimetype>image/png</bridge:Mimetype>
</bridge:Link>
<bridge:Link "Small resolution">
<bridge:Url>http://127.0.0.1:8082/GRANDTunnel/0/122388338/0/x033232t7</bridge:Url>
<bridge:Size>3322</bridge:Size>
<bridge:Mimetype>image/jpg</bridge:Mimetype>
</bridge:Link>
</bridge:Links>

Figure 7: BRIDGE Link instance

Note that links expressed in the BRIDGE Link format cab either be expressed as standard URLs or that
can be expressed using the Virtual Address Scheme, in Figure 7 above the links use the Virtual Address
based HTTP Tunneling format described in section 2.1.8.

23

BRID
2.4.2 Usage of On-Site Storage

The On-Site Storage component can be used and configured in many ways. All uses involve services that
have data that needs to be published on the BRIDGE network.

Sg

Create BRIDGE Link

GE DO05.2: BRIDGE Middleware Page 24 of 44

Event with BRIDGE link —

=

Shared OnfSite
Dataspace Storage

Consumer

Figure 8: Example of BRIDGE On-Site Storage deployment

Figure 8 above is an example of the use of the On-Site Storage. In this case a service has a large piece of
data that it wants publish on the network. Note that the service itself does not have its own HTTP based
web server, instead it asks the On-Site storage to host the data. The On-Site storage stores the data and
returns the BRIDGE Links that can be used to retrieve the data. The BRIDGE Links are then used as part
of messages sent to be shared on the network. Finally a consumer of the information can decide to retrieve
the data using the BRIDGE Link. This data will then be retrieved from the On-Site Storage component.

Note that the On-Site Storage component should be running in the same P2P node as the service that
wants to publish the information if one wants to keep the communication overhead low. So the On-Site
storage component is not a singular component in the network, instead all services that want to use the
functionality should create their own instance locally.

The On-Storage component can also act passively and be used for registering an existing WWW based
server and manage the registrations in the Service Catalogue as well as creating BRIDGE Link formatted
links when the service needs them.

24

A\

/V\ /N
A D I

BR!DGE. D05.2: BRIDGE Middleware Page 25 of 44

The third deployment option is that the On-Site Storage can be used to manage a complete directory
structure, like a web server, making all of the information available for retrieval on the BRIDGE network.
In this case the consumers would only need to use the service catalogue to find the appropriate endpoint
and then by adding paths to the HTTP tunneling URL

The full documentation of the On-Site storage service is available in section 3.4.

2.5 Transformation Services

The Transformation Services within BRIDGE are used for transforming in-between different data formats
and protocols. Since there is a wide array of different needs for transformations depending on usage
scenarios the Transformation Services is not a singular service, rather it is a toolbox with different tools
that can be applied depending on the needs and situation.

In BRIDGE two main types of Transformation Services were developed:

e Format Transformation: This is a set of templates for creating transformations to a specific target
format.

e Protocol Transformation: A set of classes that can be used when developing tools and integrating
systems into the BRIDGE platform.

The following subsections will outline the functionality of these libraries with examples.

2.5.1 Format Transformation

Format Transformation is a set of templates based on the W3C standard XSLT (Extensible Stylesheet
Language Transformations). The templates are meant to be used by developers when they need to
transform data into a specific format, for instance EDXL-RM. These templates provide the basic bolts for
creating the correct output format and also include extension functions to the XSLT language for BRIDGE
specific parts.

An example of a template is shown below in Listing 3.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"

>

<xsl:output method="xml" indent="yes"/>
<xsl:param name="urlEnd" select="'?Description=Asa:Webserver'"/>
<xsl:param name="messageGuid" select=""'3F2504E0-4F89-41D3-9A0C-0305E82C3301"'"/>
<xsl:param name="webPath" select="'/StaticImage/'"/>
<xsl:param name="urlStem" select="'http://127.0.0.1:8082/GRANDunneling/e/"'"/>
<xsl:param name="fileName" select=""image2.jpg'"/>
<xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z2""/>
<xsl:template match="/">
<EDXLDistribution xmlns='urn:oasis:names:tc:emergency:EDXL:DE:1.0"'>
<distributionID>
<xsl:value-of select="'$messageGuid'/>
</distributionID>
<senderID>ASA@bridgeproject.eu</senderID>
<dateTimeSent>
<xsl:value-of select="$timeNow'/>
</dateTimeSent>
<distributionStatus>Exercise</distributionStatus>
<distributionType>Request</distributionType>
<combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
<language>EN</language>
<contentObject>

25

Eﬁ“iﬁ D05.2: BRIDGE Middleware Page 26 of 44

<contentDescription>MEXL-UAVStaticImageUpdate</contentDescription>
<contentKeyword>
<valuelListUrn>http://icnet.mitre.org/ValuelLists/ContentKeywords</valuelListUrn>
<value>MEXL-UAVStaticImageUpdate</value>
</contentKeyword>
<xmlContent>
<embeddedXMLContent>
<UAVStaticImageUpdate xmlns="urn:BRIDGE:ASA'>
<ImagePosition xmlns="'"'>
<xsl:variable name ='firstCoord' select='substring(.//PositionContent,2)"' />
<gml:Point xmlns:gml="http://www.opengis.net/gml’'>
<gml:pos>
<xsl:value-of select="translate(substring-before($firstCoord,"]1"),","," ")'/>
</gml:pos>
</gml:Point>
</ImagePosition>
<SituationObservation xmlns=""'>
<ObservationText>
<xsl:value-of select='.//Description'/>
</0ObservationText>
<TimeStamp>
<xsl:value-of select='.//TimeStampContent'/>
</TimeStamp>
<bridge:Links xmlns:bridge="urn:bridge:1link">
<bridge:Link description="UAV Image">
<bridge:Url>
<xsl:value-of select="concat($urlStem,$webPath,$fileName,$urlEnd)"/>
</bridge:Url>
<bridge:Size>58937392</bridge:Size>
<bridge:Mimetype>image/png</bridge:Mimetype>
</bridge:Link>
</bridge:Links>
</SituationObservation>
</UAVStaticImageUpdate>
</embeddedXMLContent>
</xmlContent>
</contentObject>
</EDXLDistribution>
</xsl:template>
</xsl:stylesheet>

Listing 3: Example of a Transformation template

This template is actually used when the UAV transforms its internal UAV static image format into an
EDXL-DE based message. The different parts of the transformation are:

e First there is the parameter definition with default values, these values are easily
interchangeable.

e Secondly there is an EDXL-DE envelope created with the correct format and namespaces
containing all necessary information to create a valid message.

e Thirdly there is an XML content object which is UAV specific.

e Finally inside it there is a BRIDGE Link created that will point to the actual image.

These templates can be reused in different applications, but they will always be specific in the sense that
they will reflect the structure of the incoming format. However if the incoming format is well defined and
used by many components the template is completely reusable.

2.5.2 Protocol Transformation

As protocol transformation is hard to make completely generic within a middleware environment, we
instead choose to develop modules that can be used for this transformation. These modules are used by the
developer at development time. The developer tools provide support for selecting and integrating these

26

ER!D‘G_E D05.2: BRIDGE Middleware Page 27 of 44
protocol transformations, the developer tools are explained in deliverable D8.2. Of course the tools are
extendable and can be adapted with new Protocol Transformation components.

2.6 Agent Interoperability

Part of the BRIDGE platform functionality will be provided by software agent-platforms. These agent-
platforms are provided by various partners and have specific internal architectures. To ensure that agents
on different platforms are able to communicate with each other, and also to ensure that in the future other
agent platforms will be able to join the BRIDGE platform, a standard method of information exchange is
required.

As input for the agent interoperability the standards created by the Foundation for Intelligent Physical
Agents (http://www.fipa.org/) were used as a baseline. The FIPA Specifications that are related to
enabling agent-agent communication across platform boundaries are:

1. ACL Message Structure (SC00061G)
Defines a set of message fields that allow flexible exchange of messages between agents.
2. Agent Message Transport Service (SC00067F)
Provides a reference model for an agent Message Transport Service and a specification for
message transport information (as an envelope around the FIPA ACL Message).
3. Message Transport Protocol for HTTP (SC00084F)
Specifies the transport of messages between platforms over HTTP.
4. FIPA Communicative Act Library (CAL) Specification (SC00037J)
Defines a library of standard communicative acts that can be used by agents.
5. ACL Message Representation in String Specification (SC00070I)
Defines the syntax of the FIPA ACL in string form.

Using ACL Message Structure (SC00061G) the decision was connect the different agent platforms using
JSON-RPC as the underlying protocol. A basic APl and message structure have been agreed upon to
exchange information. The API allows for an agent-platform to request a (JSON-RPC) communication
endpoint at another platform, based on a specified endpoint type. Each created endpoint then implements a
simple message passing interface to receive messages and replies to messages. This approach allows for
agent-platforms to choose whether to expose a single endpoint (and return this endpoint upon each
incoming creation request, and internally route/deliver the message to the correct agent), or for example to
create a new agent for each endpoint creation request (and allow for messages to be delivered directly to
the agent from the outside). The interface is specified below:

create: Returns the URL of a JSON-RPC endpoint

{

"method": "create”,
"params™: {
"type": <integer indicating endpoint type>,
"url™: <supply reverse JSON-RPC contact URL here>
}
}

27

/'V'\ N
BR!DGE. D05.2: BRIDGE Middleware Page 28 of 44

postMsg / postReply: Returns status indicating successful reception of message

{
"method": "postMsg/postReply”,

"params": {
"message": {
"header": {
"msg_type": <integer indicating message type>
}
"body": { <message specific content> }
}
}
}

28

BR!D(iE D05.2: BRIDGE Middleware Page 29 of 44

3 Software Components

3.1 Network Manager Service Catalogue API

getService
eu.linksmart.network.VirtualAddress getService()
throws java.rmi.RemoteException

Retrieves Virtual Address of NetworkManagerCore instance.
Returns:

Virtual Address of NetworkManagerCore instance
Throws:

java.rmi.RemoteException

registerService
eu.linksmart.network.Registration registerService(eu.linksmart.utils.Part[] attributes,
java.lang.String endpoint,
java.lang.String backboneName)
throws java.rmi.RemoteException
Creates a Virtual Address for a particular service.
Parameters:
attributes - Attributes such as PID (which should be unique) or description
endpoint - Backbone specific endpoint for the service, e.g. URL or JXTA id
backboneName - Class name of the Backbone from which this service is reachable

Returns:
Virtual Address instance.
Throws:
java.rmi.RemoteException

removeService
boolean removeService(eu.linksmart.network.Virtual Address virtualAddress)
throws java.rmi.RemoteException
Removes a particular service from internal memory
Parameters:
virtualAddress - for particular service.

Returns:
TRUE if operation succeeded and FALSE if not.

Throws:
java.rmi.RemoteException

getAvailableBackbones
java.lang.String[] getAvailableBackbones()
throws java.rmi.RemoteException
Provides the list of names of communication channels or backbones the NetworkManager supports. This
information can be used by a service to decide which channel to register over.
Returns:
Class names of the connected Backbones

29

BR!D(iE D05.2: BRIDGE Middleware Page 30 of 44

Throws:
java.rmi.RemoteException

getServiceByAttributes
eu.linksmart.network.Registration[] getServiceByAttributes(
eu.linksmart.utils.Part[] attributes)
throws java.rmi.RemoteException

Simplest method to get services which match given attributes. If one or more services with these particular
attributes are found, an array containing the registrations of services is returned. If a service does not
contain all attributes that were used for the search (e.g. the service does not contain an attribute
"description™), but the values of the other required attributes match, the service will be returned. If it has
all attributes, but not all values of these attributes match the required values, the service is not returned.
Method will wait default timeout to discover a remote set of registrations.
Parameters:

attributes - The attributes the service is supposed to have

Returns:
The services as registration objects, containing virtual addresses and attributes

Throws:
java.rmi.RemoteException

getServiceByAttributes
eu.linksmart.network.Registration[] getServiceByAttributes(
eu.linksmart.utils.Part[] attributes,
long timeQOut,
boolean returnFirst,
boolean isStrictRequest)
throws java.rmi.RemoteException

Method to get services with given attributes. Requires additional parameters to control in detail how to
search and what services to search for.
Parameters:
attributes - The attributes the service should have
timeOut - Time to wait for discovery responses
returnFirst - If true, method will stop searching when one service is found. If more than one service is
found at the same time, the other services will be returned as well.
isStrictRequest -
true - only services will be discovered which possess all attributes
false - attribute types which a service does not have are ignored as long there is at least one matching
attribute

Returns:
The services with matching attributes as registration objects. Even if returnFirst is set true more than one
registration of services may be available.

Throws:
java.rmi.RemoteException

30

BR!D(iE D05.2: BRIDGE Middleware Page 31 of 44

getServiceByPID

eu.linksmart.network.Registration getServiceByPID(java.lang.String PID)
java.lang.lllegal ArgumentException,
java.rmi.RemoteException

Gets the Virtual Address for the available service with a given PID.
Parameters:
PID - The persistent identifier of the service.

Returns:
The Registration object, null if no Virtual Address exists for the given PID.

Throws:
java.rmi.RemoteException
java.lang.lllegal ArgumentException

getServiceByDescription
eu.linksmart.network.Registration[] getServiceByDescription(java.lang.String description)
java.rmi.RemoteException

Gets the Registration for the available service(s) with a given description.
Parameters:
description - The required service description.

Returns:
The services with matching descriptions as registration objects

Throws:
java.rmi.RemoteException

getServiceByQuery
eu.linksmart.network.Registration[] getServiceByQuery(java.lang.String query)
java.rmi.RemoteException

Gets the registration objects for the locally available services matching the passed query. Remote services
cannot be tested against the query containing other attributes than ‘description’. This method should only
be used by advanced developers.
Parameters:

query - The formulated query.

Returns:
The matching services as registration objects

Throws:
java.rmi.RemoteException

sendData

eu.linksmart.network.NMResponse sendData(eu.linksmart.network.Virtual Address sender,
eu.linksmart.network.Virtual Address receiver,

31

BR!D(iE D05.2: BRIDGE Middleware Page 32 of 44

byte[] data,
boolean synch)

throws java.rmi.RemoteException
Send data from one LinkSmart node to another node.

Parameters:
sender - The virtual address of the sender
receiver - The virtual address of the receiver
data - The data to be sent
synch - boolean indicating whether method call should be synchronous or asynchronous

Returns:
Response instance

Throws:
java.rmi.RemoteException

3.2 loT::loTResourceCatalogue Class Reference

The 10T Resource Catalogue manages all knowledge regarding loTResources that have been discovered
and are active in the network. The 10T Resource Catalogue knows about loTResources from a network
perspective but does not handle the locations or context of the loTResources.

Public Member Functions
o void ResolveloTResources (System.String gateway, System.String discovermanagertype)

Initiates a resolve process for unresolved loTResources of a certain type on a specific gateway.
o void DiscoverloTResources (System.String gateway)

Initiates a discovery process on a specific gateway. The discovery will be done for all types of
loTResources.

o string ProcessErrorMessage (string loTResourceld, string theMessage)
Process an errormessage from a specifc device and returns the result.
o string GetDeviceXML (string loTResourceld, string idtype)
Gives an XML description of a device in SCPD (Service Control Point Document) format.
o string GetloTloTResources (string gateway)
Gives a list of XML descriptions for all loTResources at a gateway.
o string GetloTloTResourcesFromXpath (string xpath)
Gives a list of XML descriptions for all loTResources based on a XPath selection.
o string GetloTloTResourcesEndpoints (string gateway)
Gives a list of web service endpoints for all loTResources at a gateway.
o string GetloTloTResourcesFromType (string gateway, string devicetype)
Gives a list of XML descriptions for all 10T loTResources at a gateway based on the device type.
o string InvokeloTService (string loTResourceld, string idtype, string method, string arguments)
Allows invocation of any method offered in the general 10T service of a device.
o string InvokeService (string loTResourceld, string idtype, string serviceid, string method, string arguments)
Allows invocation of any method offered in any service of a device.
o string InvokeServiceXPath (string xpath, string serviceid, string method, string arguments)

32

BR!D(;E D05.2: BRIDGE Middleware Page 33 of 44

\

Allows invocation of any method offered in any service on a set of loTResources selected by an Xpath
expression.

o string AddDevice (string devicedescription)
Allows manual adding of loTResources to the network that cannot be discovered using the default
discovery protocol.

o void RemoveDevice (string loTResourceld, string idtype)
Removes a device from the 10T Resource Catalogue and stops the device.

o string GetloTURLsFromXpath (string xpath, string VirtualAddressType, string sender, string
callerNMSoapTunelUriURL)

Returns a list of 10T encoded urls for the loTResources that match xpath.
o bool IsRegistered (string VirtualAddress)
Tells if a device with a given 10T ID is registered with the catalogue.
o string GetWSEndpoint (string loTResourceld, string idtype)
Returns the web service endpoint for a given device.
o string GetloTWSEnNdpoint (string loTResourceld, string idtype)
Returns the endpoint for the generic 10T web service a given device.
o string GetWSDL (string loTResourceld, string idtype)
Returns the WSDL description of a given device.
o void StartloTResources (string xpath)
Starts loTResources that match a given xpath expression. The expression is applied to the SCPD XML
of the device.
o void StoploTResources (string xpath)
Stops loTResources that match a given xpath expression. The expression is applied to the SCPD XML
of the device.
o string GetVirtualAddress (string application, string devicelocalid)
Returns the VirtualAddress for a device based on the local application id assinged to loTResources.
o string GetVirtualAddresssFromXPath (string application, string xpath, string VirtualAddressType)

Returns the VirtualAddress for a device based on an xpath description which is applied to the SCPD
devoce model.

Detailed Description

The 10T Resource Catalogue manages all knowledge regarding loTResources that have been discovered
and are active in the network. The 10T Resource Catalogue knows about loTResources from a network
perspective but does not handle the locations or context of the loTResources.

Member Function Documentation

void loT::loTResourceCatalogue::ResolveloTResources (System.String gateway, System.String
discovermanagertype) [inline]

Initiates a resolve process for unresolved loTResources of a certain type on a specific gateway.

Parameters:

33

f N/ \

gateway The gateway for physical loTResources
discovermanagertype The discovery manager which should resolve the loTResources, for instance
BluetoothDiscoverymanager,

void loT::loTResourceCatalogue::DiscoverloTResources (System.String gateway) [inline]
Initiates a discovery process on a specific gateway. The discovery will be done for all types of loTResources.

Parameters:
gateway The gateway for physical loTResources, where to do a discovery process

string 1oT::loTResourceCatalogue::ProcessErrorMessage (string loTResourceld, string theMessage)
[inline]

Process an errormessage from a specific device and returns the result.

Parameters:

loTResourceld The unique Virtual Address for the device
theMessage The error message

string loT::loTResourceCatalogue::GetDevice XML (string loTResourceld, string idtype) [inline]
Gives an XML description of a device in SCPD (Service Control Point Document) format.

Parameters:

loTResourceld The an id for the loTResource
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

Returns:
A string with an SPCD XML for the device

string loT::loTResourceCatalogue::GetloTloTResources (string gateway) [inline]
Gives a list of XML descriptions for all loTResources at a gateway.

Parameters:
gateway The name of the gateway

Returns:
A string with SPCD XML:s for all loTResources at gateway

string loT::loTResourceCatalogue::GetloTIoTResourcesFromXpath (string xpath) [inline]
Gives a list of XML descriptions for all loTResources based on a XPath selection.

Parameters:
xpath An XPath expression that will be applied to the device XML as a selection filter. loTResources that match the
Xpath expression, will be selected.

Returns:

34

\/ \ _

A string with SPCD XML:s for all loTResources at gateway

string loT::loTResourceCatalogue::GetloTloTResourcesEndpoints (string gateway) [inline]
Gives a list of web service endpoints for all loTResources at a gateway.

Parameters:
gateway The name of the gateway,if empty it will return loTResources for all gateways

Returns:
An XML string with pairs of device id:s and their web service endpoints

string loT::loTResourceCatalogue::GetloTloTResourcesFromType (string gateway, string devicetype)
[inline]
Gives a list of XML descriptions for all 10T loTResources at a gateway based on the device type.

Parameters:
gateway The name of the gateway,if empty it will return loTResources for all gateways
devicetype A device URN

Returns:
A string with SPCD XML:s for all loTResources that match the device type

string loT::loTResourceCatalogue::InvokeloTService (string loTResourceld, string idtype, string method,
string arguments) [inline]
Allows invocation of any method offered in the general 10T service of a device.

Parameters:

loTResourceld The id for the device
idtype The type of identfier used, values could be UDN, FriendlyName, or Virtual Address

method The method to invoke
arguments Arguments to use following the format: parl=12;par2=mystring;par3=45

Returns:
A string with the result of the invocation

string loT::loTResourceCatalogue::InvokeService (string loTResourceld, string idtype, string serviceid,
string method, string arguments) [inline]
Allows invocation of any method offered in any service of a device.

Parameters:

loTResourceld The id for the device

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address
serviceid The serviceid following the format "urn:upnp-org:serviceld:weatherservice:thermometer:1"
method The method to invoke

arguments Arguments to use following the format: par1=12;par2=mystring;par3=45

35

N/ \

TP T ST

BR!D(i D05.2: BRIDGE Middleware Page 36 of 44

Returns:
A string with the result of the invocation

string loT::loTResourceCatalogue::InvokeServiceXPath (string xpath, string serviceid, string method,
string arguments) [inline]

Allows invocation of any method offered in any service on a set of loTResources selected by an Xpath
expression.

Parameters:

xpath An xpath expression to select loTResources for which the method invocation should be done
serviceid The serviceid following the format "urn:upnp-org:serviceld:weatherservice:thermometer:1"
method The method to invoke

arguments Arguments to use following the format: par1=12;par2=mystring;par3=45

Returns:

A string with the result of the invocation
A string with the result of the invocation

string loT::loTResourceCatalogue:: AddDevice (string devicedescription) [inline]

Allows manual adding of loTResources to the network that cannot be discovered using the default discovery
protocol.

Parameters:
devicedescription An SPCD description of the device to be added

void loT::loTResourceCatalogue::RemoveDevice (string loTResourceld, string idtype) [inline]
Removes a device from the 10T Resource Catalogue and stops the device.

Parameters:

loTResourceld The id for the device
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string loT::loTResourceCatalogue::GetloTURLsFromXpath (string xpath, string VirtualAddressType,
string sender, string callerNMSoapTunelUriURL) [inline]

Returns a list of 10T encoded urls for the loTResources that match xpath.

Parameters:

xpath Valid xpath expression

VirtualAddressType The type ofVirtual Addressused

sender TheVirtualAddressof the sender, normally an empty string
callerNMSoapTunelUriURL The url for the callers SOAP tunnel, if null is sent in
http://localhost:8082/GRANDTunneling/ is used

bool 10T::loTResourceCatalogue::IsRegistered (string VirtualAddress) [inline]
Tells if a device with a given 10T ID is registered with the catalogue.

36

Parameters:
Virtual Address The id for the device

Returns:
True if a device with the Virtual Address is registered otherwise false

string loT::loTResourceCatalogue::GetWSEndpoint (string loTResourceld, string idtype) [inline]
Returns the web service endpoint for a given device.

Parameters:

loTResourceld The id for the device
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string loT::loTResourceCatalogue::GetloTWSEndpoint (string loTResourceld, string idtype) [inline]
Returns the endpoint for the generic 10T web service a given device.

Parameters:

loTResourceld The id for the device
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string loT::loTResourceCatalogue::GetWSDL (string loTResourceld, string idtype) [inline]
Returns the WSDL description of a given device.

Parameters:

loTResourceld The id for the device
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

void loT::loTResourceCatalogue::StartloTResources (string xpath) [inline]

Starts loTResources that match a given xpath expression. The expression is applied to the SCPD XML of the
device.

Parameters:
xpath A valid Xpath expression

void loT::loTResourceCatalogue::StoploTResources (string xpath) [inline]

Stops loTResources that match a given xpath expression. The expression is applied to the SCPD XML of the
device.

Parameters:
xpath A valid Xpath expression

string loT::loTResourceCatalogue::GetVirtualAddress (string application, string devicelocalid) [inline]
Returns the Virtual Address for a device based on the local application id assigned to loTResources.

37

LN

BR!D(;E D05.2: BRIDGE Middleware Page 38 of 44

Parameters:

application The application were the device resides
devicelocalid The local id for the device within the application for instance MyDiscoBall

string 10T::loTResourceCatalogue::GetVirtualAddresssFromXPath (string application, string xpath, string
VirtualAddressType) [inline]

Returns the Virtual Address for a device based on an xpath description which is applied to the SCPD device
model.

Parameters:

application The application were the device resides
xpath a valid xpath expression

3.3 Shared Dataspace Class Reference
This class implements the proxy for the shared dataspace.

Public Member Functions

o void publish (System.String topic, System.String contentType, System.String metadata, System.String payLoad,
System.String persist, System.String itemld)

Publishes on the specified topic.

o void query (System.String topic, System.String filter, out System.String dataltem)
Queries the specified topic.

o void subscribe (System.String topic, System.String filter, System.String callBack)
Subscribes the specified topic.

o void unSubscribe (System.String subscriptionld)
Unsubscribe.

o void Remove (System.String Topic, System.String Itemld)
Removes the specified data item.

o System.String ListSubscriptions ()
Lists all the subscriptions.

o System.String subscribeWithServiceFilter (System.String topic, System.String filter, System.String Filter)
Subscribes to the topic with a filter.

Detailed Description
This class implements the proxy for the shared dataspace.

38

Y V N\
/ \ /;
/ \ /,

BR!D(;E D05.2: BRIDGE Middleware Page 39 of 44

Member Function Documentation

void SharedDateSpaceNS::SharedDataspace::publish (System.String topic, System.String
contentType, System.String metadata, System.String payLoad, System.String persist,
System.String itemld) [inline]

Publishes on the specified topic.

Parameters:
topic The topic.
contentType Type of the content.
metadata The metadata.
payLoad The pay load.
persist The persist.
itemld The item identifier.

void SharedDateSpaceNS::SharedDataspace::query (System.String topic, System.String filter, out
System.String dataltem) [inline]

Queries the specified topic.

Parameters:

topic The topic.
filter The filter.
dataltem The data item.

void SharedDateSpaceNS::SharedDataspace::subscribe (System.String topic, System.String filter,
System.String callBack) [inline]

Subscribes the specified topic.

Parameters:

topic The topic.
filter The filter.
callBack The call back.

void SharedDateSpaceNS::SharedDataspace::unSubscribe (System.String subscriptionld)
[inline]

Unsubscribe.

Parameters:
subscriptionld The subscription identifier.

void SharedDateSpaceNS::SharedDataspace::Remove (System.String Topic, System.String Itemld)
[inline]

Removes the specified data item.

39

BRIDGE _D05:2: BRIDGE Middleware Page 40 of 44
Parameters:
Topic The topic.

Itemld The item identifier.

System.String SharedDateSpaceNS::SharedDataspace::ListSubscriptions () [inline]
Lists all the subscriptions.

Returns:

System.String SharedDateSpaceNS::SharedDataspace::subscribeWithServiceFilter (System.String
topic, System.String filter, System.String Filter) [inline]

Subscribes to the topic with a filter.

Parameters:

topic The topic.
filter The filter.
Filter The filter.

Returns:

3.4 OnSiteStorage Class Reference

3.4.1 OnSiteStorage::Filelnfo Class Reference

Public Member Functions

o Filelnfo ()
o Filelnfo (string fileLocation, string size, string mimetype, string description)

Initializes a new instance of the Filelnfo class.

Properties

o string Filelocation [get, set]
Gets or sets the filelocation.

o string Mimetype [get, set]
Gets or sets the mimetype.

o string Size [get, set]
Gets or sets the size.

o string Description [get, set]
Gets or sets the description.

40

BRIDGE _D05:2: BRIDGE Middleware Page 41 of 44

Constructor & Destructor Documentation
OnSiteStorage::Filelnfo::FileInfo () [inline]

OnSiteStorage::FileInfo::FileInfo (string fileLocation, string size, string mimetype, string
description) [inline]

Initializes a new instance of the Filelnfo class.

Parameters:

fileLocation The file location.
size The size.

mimetype The mimetype.
description The description.

Property Documentation

string OnSiteStorage::Filelnfo::Filelocation [get, set]
Gets or sets the filelocation.
The filelocation.

string OnSiteStorage::Filelnfo::Mimetype [get, set]
Gets or sets the mimetype.
The mimetype.

string OnSiteStorage::Filelnfo::Size [get, set]
Gets or sets the size.
The size.

string OnSiteStorage::Filelnfo::Description [get, set]
Gets or sets the description.
The description.

41

A Y -'; 1 \ \
4‘.. \
/ \ \

BRIDGE D05.2: BRIDGE Middleware Page 42 of 44

3.4.2 OnSiteStorage::OnSiteStorage Class Reference
This is the interface for the On-Site Storage Manager.

Public Member Functions
o bool ConnectToNetwork (string SID, string description, out string VirtualAddress)
Connects the On-Site storage to the network and registers in the Service Catalogue.
o bool DeConnectFromNetwork ()
Removes the On-Site storage from the network and deregisters from Service Catalogue.

o bool CreateNetworkRegistration (string SID, string description, string endpoint, out string
VirtualAddress)

Creates the network registration for an existing HTTP based service.
o bool DeleteNetworkRegistration (string VirtualAddress)

Deletes the network registration in the service catalogue.
o bool StartPublishing (int port)

Starts the internal HTTP server in On-Site storage.
o bool StopPublishing ()

Stops the publishing.

Private Member Functions
o XmlDocument CreateBRIDGEL.ink (FileInfo[] dataltem)
Creates the BRIDGE link.
o string PublishData (Filelnfo[] dataltems, out XmIDocument BRIDGEL.ink)
Publishes the data.
o bool UnPublishData (string datald)
Removes published data.
o Filelnfo[] ListAllPublishedData ()
Lists all data published in the On-Site Storage.

Detailed Description
This is the interface for the On-Site Storage Manager.

Member Function Documentation

bool OnSiteStorage::OnSiteStorage::ConnectToNetwork (string SID, string description,
out string VirtualAddress) [inline]

Connects the On-Site storage to the network and registers in the Service Catalogue.

Parameters:

SID The sid.
description The description.
VirtualAddress The virtual address for started service.

Returns:
true if successfully registered

42

/A /M
4‘.. \
/ \ \

BRIDGE D05.2: BRIDGE Middleware Page 43 of 44

bool OnSiteStorage::OnSiteStorage::DeConnectFromNetwork () [inline]
Removes the On-Site storage from the network and deregisters from Service Catalogue.

Returns:

bool OnSiteStorage::OnSiteStorage::CreateNetworkRegistration (string SID, string
description, string endpoint, out string VirtualAddress) [inline]

Creates the network registration for an existing HTTP based service.

Parameters:

SID The sid.

description The description.

endpoint The endpoint of the HTTP service.
VirtualAddress The virtual address.

Returns:
true if successfully registered

bool OnSiteStorage::OnSiteStorage::DeleteNetworkRegistration (string VirtualAddress)
[inline]

Deletes the network registration in the service catalogue.

Parameters:
VirtualAddress The virtual address.

Returns:
true if successfully deregistered

bool OnSiteStorage::OnSiteStorage::StartPublishing (int port) [inline]
Starts the internal HTTP server in On-Site storage.

Parameters:
port The port to be used

Returns:
TRUE if successful

bool OnSiteStorage::OnSiteStorage::StopPublishing () [inline]
Stops the publishing.

Returns:
TRUE if successful;

43

A Y -'; 1 \ \
4‘.. \
/ \ \

BRIDGE D05.2: BRIDGE Middleware Page 44 of 44

XmIDocument OnSiteStorage::OnSiteStorage::CreateBRIDGEL ink (Filelnfo[] dataltem)
[inline, private]

Creates the BRIDGE link.

Parameters:
dataltems The data items to part of the BRIDGE link

Returns:
The BRIDGE link in an XmlIDocument

string OnSiteStorage::OnSiteStorage::PublishData (Filelnfo[] dataltems, out
XmiDocument BRIDGELIink) [inline, private]

Publishes the data.

Parameters:

dataltems The data items.
BRIDGELInk The created bridge link.

Returns:
The 1D of the published data

bool OnSiteStorage::OnSiteStorage::UnPublishData (string datald) [inline,
private]

Removes published data.

Parameters:
datald The data item identifier.

Returns:
TRUE if successful

Fileinfo [] OnSiteStorage::OnSiteStorage::ListAllPublishedData () [inline,
private]

Lists all data published in the On-Site Storage.

Returns:
All currently published data items

44

