

Deliverable reference: Date: Responsible partner:

D05.2 30 April 2015 CNet Svenska AB

Bridging Resources and Agencies in Large-Scale Emergency Management

BRIDGE is a collaborative project co-funded by the European Commission within
 the Seventh Framework Programme (FP7-SEC-2010-1)

SEC-2010.4.2-1: Interoperability of data, systems, tools and equipment
Grant Agreement No.: 261817

Duration: 1 April 2011 – 31 March 2015

www.sec-bridge.eu

Title:

BRIDGE Middleware

Editor(s): Approved by:

Peeter. Kool Dag Ausen
Classification:

Public
Abstract / Executive summary:

This deliverable describes the prototype D05.2 BRIDGE Middleware. The BRIDGE middleware

infrastructure provides an abstraction layer for the network-level infrastructure, allowing easy access

for higher-level components and GUI-layers. It also provides the means for managing the dynamic

environment where services can come and go.

Document URL:
http://www.sec-bridge.eu/deliverables/...

ISBN number:

Version 1.2: Final 30.04.2015

D05.2: BRIDGE Middleware Page 2 of 44

Table of Contents

BRIDGE Middleware ... 1

Table of Contents .. 2

Version History ... 4

Contributing partners ... 5

List of Figures.. 6

List of Abbreviations ... 7

1 Introduction ... 8

2 Overview ... 9

2.1 THE NETWORK MANAGER .. 9

2.1.1 Virtual Address ... 10

2.1.2 Network Manager Components ... 10

2.1.3 Backbone... 11

2.1.4 Backbone Router ... 11

2.1.5 Network Manager Core ... 12

2.1.6 Communication Security Manager .. 12

2.1.7 Identity Manager ... 12

2.1.8 HTTP Tunneling .. 12

2.2 SERVICE CATALOGUE ... 14

2.2.1 The Network Manager Service Catalogue .. 15

2.2.2 IoT Resource Catalogue .. 17

2.3 THE SHARED DATASPACE... 20

2.3.1 The Shared Dataspace proxy ... 21

2.4 ON-SITE STORAGE SERVICE ... 22

2.4.1 BRIDGE Link Format.. 22

2.4.2 Usage of On-Site Storage .. 24

2.5 TRANSFORMATION SERVICES ... 25

2.5.1 Format Transformation ... 25

2.5.2 Protocol Transformation ... 26

2.6 AGENT INTEROPERABILITY ... 27

3 Software Components .. 29

3.1 NETWORK MANAGER SERVICE CATALOGUE API .. 29

Version 1.2: Final 30.04.2015

D05.2: BRIDGE Middleware Page 3 of 44

3.2 IOT::IOTRESOURCECATALOGUE CLASS REFERENCE .. 32

3.3 SHARED DATASPACE CLASS REFERENCE .. 38

3.4 ONSITESTORAGE CLASS REFERENCE .. 40

3.4.1 OnSiteStorage::FileInfo Class Reference .. 40

3.4.2 OnSiteStorage::OnSiteStorage Class Reference .. 42

Version 1.2: Final 30.04.2015

D05.2: BRIDGE Middleware Page 4 of 44

Version History

Version
1
 Description Date Who

0.1 Initial TOC 7.11.2011 Peeter Kool

0.2 Agent Platform Interoperability + FIPA 14.3.2012 David Mobach

0.3 AgentScape + Dataspace 15.3.2012 Reinier Timmer

0.4 CHAP Eve added, created first e-room

version

22.4.2012 Hongliang Guo,

Peeter Kool

0.5 Added Network Manager section 13.10.2014 Mark Vinkovits

Peeter Kool

0.6 Added Service Catalogue section 23.10.2014 Mark Vinkovits

Matts Ahlsen

Peeter Kool

0.8 Added On-Site Storage and Transformation

Services

22.02.2015 Peeter Kool

1.0 Version ready for peer-review 24.04.2015 Peeter Kool

1.1 Addressed comments from peer review by

Sander van Splunter.

29.04.2015 Peeter Kool

1.2 Addressed comments from peer-review by

Antoine Pultier

30.04.2015 Peeter Kool

Version 1.2: Final 30.04.2015

D05.2: BRIDGE Middleware Page 5 of 44

Contributing partners

CNet
Danderyd

Sweden

Matts Ahlsén

matts.ahlsen@cnet.se

Peeter Kool
Peeter Kool@cnet.se

UNIKLU

Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria

Christian Raffelsberger
christian.raffelsberger@aau.at

FIT
Fraunhofer-Institut für Angewandte

Informationstechnik

Sankt Augustin, Germany

Andreas Zimmermann
andreas.zimmermann@fit.fraunhofer.de

Mark Vinkovits

Mark.vinkovits@fit.fraunhofer.de

SAAB Group

Sweden

Andreas Carlsson
andreas.ac.carlsson@saabgroup.com

Thales R&T Nederland

Delft
The Netherlands

David Mobach
david.mobach@d-cis.nl

Reinier Timmer
reinier.timmer@d-cis.nl

Almende

Rotterdam

Netherlands

Ludo Stellingsdorf

ludo@almende.org

mailto:matts.ahlsen@cnet.se
mailto:Peeter%20Kool@cnet.se
mailto:andreas.zimmermann@fit.fraunhofer.de

6

D05.2: BRIDGE Middleware Page 6 of 44

List of Figures
FIGURE 1: BRIDGE SYSTEM OF SYSTEMS CONTEXT...8

FIGURE 2: BRIDGE P2P NETWORK .. 10

FIGURE 3: ARCHITECTURE OF THE NETWORK MANAGER ... 11

FIGURE 4: HTTP TUNNELING EXAMPLE .. 13

FIGURE 5: THE SHARED DATASPACE PROXY ... 22

FIGURE 6: BRIDGE LINK SCHEMA .. 23

FIGURE 7: BRIDGE LINK INSTANCE ... 23

FIGURE 8: EXAMPLE OF BRIDGE ON-SITE STORAGE DEPLOYMENT .. 24

7

D05.2: BRIDGE Middleware Page 7 of 44

List of Abbreviations
DLNA Digital Living Network Alliance

EDXL Emergency Data Exchange Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

JXTA P2P protocol https://jxta.kenai.com/

P2P Peer to Peer network

REST Representational State Transfer

SCPD Service Control Protocol Description

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

UPnP Universal Plug and Play

WSDL Web Services Description Language

XSLT Extensible Stylesheet Language Transformations

8

D05.2: BRIDGE Middleware Page 8 of 44

1 Introduction
This report describes the prototype deliverable D5.2 Middleware which is the result from Task 5.2

Middleware. The aim of the task was to design and develop the middleware infrastructure for BRIDGE

networks, which provides an abstraction layer to the network-level infrastructure and interfaces to higher-

level components and GUI-layers. The work performed in this task has taken into account the results

achieved in the HYDRA project: The HYDRA middleware was extended and adapted to meet the

BRIDGE requirements elicited in WP2. Note that the HYDRA middleware has been renamed to

LinkSmart, and will be referred as such in the remainder of this deliverable.

Figure 1: BRIDGE system of systems context

 The main part of this deliverable deals with the extensions made to the LinkSmart components and new

components that have been created to support the very dynamic environment where the BRIDGE

middleware will be deployed. These components have been used in the different demonstrations providing

the glue in-between the applications running on top of the BRIDGE middleware.

There is also a section, section 2.6, dedicated to the interoperability of the agent-based parts of the

BRIDGE platform.

9

D05.2: BRIDGE Middleware Page 9 of 44

2 Overview
There are five main parts in the BRIDGE middleware which provide the virtualisation of the BRIDGE

network as well as the means to provide a framework for managing a very dynamic environment:

 The Network Manager that provides the means to be able to communicate in between services.

 The Service Catalogue that provides information about the actual services available at a given

time in the network. In the BRIDGE network we use two different means for searching

depending on situation.

 The Shared Dataspace that provides services for storing and distributing information in the

network, in addition it provides functionality for eventing.

 The On-Site Storage that provides a generic means for providing all sorts of information on the

BRIDGE network on a retrieve if needed basis.

 The Transformation Component provides reusable templates in for transforming in-between

formats and protocols.

The following subchapters describe these parts and illustrate their usage with examples. The components

which are extensions to LinkSmart are already published on the LinkSmart source repository. Finally there

is an appendix with code documentation of the most important parts.

2.1 The Network Manager

The BRIDGE Network Manager is based on LinkSmart Network Manager. In the BRIDGE project the

code was refactored and new functionalities were added. Among the most important additions are:

 The Service Catalogues

 Tunneling of large objects in the BRIDGE network.

 The possibility to tunnel all HTTP based communications through the BRIDGE Network Manager,

in order to provide support for REST based services.

 Modularized implementation to ease replacing and additions of new modules.

The BRIDGE network consist of a set of Network Managers that form a private secured P2P network with

its own addressing space see Figure 2:

10

D05.2: BRIDGE Middleware Page 10 of 44

BRIDGE Network

Network Manager:
BRIDGE Node 1

Service
Catalogue

BRIDGE P2P Network

Network Manager:
BRIDGE Node 3

Service
Catalogue

Network Manager:
BRIDGE Node 2

Service
Catalogue

Figure 2: BRIDGE P2P Network

Below we describe how communication is done by the services and subsequently we describe the usage of

the Service Catalogue. But first we look at the individual components within the Network Manager itself

but in order to understand the components we start by explaining the concept of a Virtual Address.

2.1.1 Virtual Address

The Virtual Address object contains the address that each registered service has within the BRIDGE

network. In the BRIDGE network each service endpoint is identified by a 32-byte long Virtual Address

that has the following format: contextID-3.contextID-2.contextID-1.serviceID e.g.:

0.0.0.8248725583067352822.

The Virtual Address is used to access and invoke the service, it also keeps the IP endpoint hidden to

ensure privacy and security of the service.

Virtual Address assignment is done automatically by the Network Manager when developers register their

web services to it.

2.1.2 Network Manager Components

The Network Manager is a plug in based architecture where with well-defined components that have strict

interfaces. These interfaces also provide the possibility for adding functionality without interfering with

the rest of the code, or even completely replace one of the components. The following subchapters will

provide a description of the modules and their functions. The overview of the architecture can be seen in

Figure 3.

11

D05.2: BRIDGE Middleware Page 11 of 44

Figure 3: Architecture of the Network Manager

2.1.3 Backbone

Backbone bundles are responsible for handling the physical channel over which messages are sent. The

backbone has to handle the synchronous and asynchronous nature of the communication as for the rest of

the application backbone calls should always be handled asynchronously. How broadcasting and

multicasting is done is also handled internally and with best effort. The Backbone holds a routing table to

pair Virtual Addresses to physical Ids. The physical Ids should never leave the Backbone except for

presentation purposes. The Backbone must resolve by itself how to retrieve Virtual Addresses from sent

packages. The current implementation uses JXTA as the low level communication P2P implementation.

2.1.4 Backbone Router

The BackboneRouter is holding references and managing several Backbones. The BackboneRouter

perform the mapping of a Virtual Address to a Backbone. The BackboneRouter offers methods to register

and unregister routes. It does this also automatically by storing the Virtual Address to the Backbone its

message came from. The NetworkManagerCore invokes the BackboneRouter to register route entries, i.e.

a specific backbone implementation (e.g. JXTA, SOAP) mapped to an endpoint. In case the indicated

backbone is not available yet, the BackboneRouter registers potential routes. Those potential routes can

become active routes as soon as the BackboneRouter was able to bind the proper backbone

implementation. If the backbone is unbound from the BackboneRouter the RouteEntry is removed from

12

D05.2: BRIDGE Middleware Page 12 of 44

the route cache. In future, an application might be able to assign more than one route entry to one Virtual

Address, e.g. a REST WS endpoint could be registered in addition to a SOAP WS endpoint.

2.1.5 Network Manager Core

The Core implements the interfaces of the NetworkManager, which is the entry point to a LinkSmart

network. It is the connection bundle between the different modules as it forwards requests coming to it to

the destination. It has a ConnectionManager that holds references to Connections, which process data to

send over the network. This includes security operations, compression, encoding, etc. The

NetworkManagerCore should be kept as simple as possible and logic should be put into external modules.

2.1.6 Communication Security Manager

The CommunicationSecurityManager provides implementations of SecurityProtocol objects, which can be

used for securing communication. Security for a connection is established by assigning a SecurityProtocol

object to a Connection object. The CommunicationSecurityManager holds references to actual

implementation bundles that implement the security scheme. This means the security can be easily

exchanged even in run time.

2.1.7 Identity Manager

The IdentityManager is responsible for generating Virtual Addresses and for pairing Virtual Addresses to

identities. An identity is independent from the Backbone it uses. This means that the IdentityManager

should only see the application level Virtual Address identity and nothing else. A Virtual Address is in

general an address and a set of attributes. What these attributes are is responsibility of the IdentityManager

implementation.

2.1.8 HTTP Tunneling

An important concept in the network addressing is the usage of the HTTP tunnel provided by the Network

Manager to invoke and access services on the BRIDGE network.

In the P2P overlay network of the BRIDGE network every node only communicates with its local

NetworkManager. To ease the access to services of the NetworkManager, HTTP tunneling is provided

allowing access between services over generic endpoints using Virtual Addresses.

13

D05.2: BRIDGE Middleware Page 13 of 44

HTTP Tunneling

Network Manager:
BRIDGE Node 1

Service
Catalogue

BRIDGE P2P Network

Network Manager:
BRIDGE Node 3

Service
Catalogue

Network Manager:
BRIDGE Node 2

Service
Catalogue

Service A Service B

1:Find Service B
2: Virtual Address

for Service B

3: Call Service B
Using HTTP Tunnel

4: Forward Call

5: Call Forwarded

6:Return Result

7: Return Result

8: Result returned

Figure 4: HTTP Tunneling example

A simple example of a service invocation is shown in Figure 4, where Service A wants to invoke Service

B. The following are the basic steps that need to be followed:

1. Find the Virtual Address for Service B: This is done by asking the service catalogue for a specific

service, see section 2.2.

2. If the service is found in the catalogue the Virtual Address will be returned.

3. Call Service B by creating the HTTP tunneling URL using the Virtual Address. If it is a Web Service

that is invoked the endpoint for the Web Service Client is changed to the HTTP tunneling URL. If

it is REST or other HTTP based call the tunneling URL can be used immediately. (The format of

the Tunneling URL is explained in the following section)

4. The Network Manager forwards the call including the data to the Network Manager that has

Service B using the P2P network.

5. Finally the call is forwarded to Service B supplying the data and any necessary headers.

14

D05.2: BRIDGE Middleware Page 14 of 44

6. Service B returns the data in the same way as usual.

7. The Network Manager returns the result to the invoking Network Manager using the P2P

network.

8. Finally the result is returned to Service A.

The special code necessary to achieve this in Service A is that it needs to resolve Service B in the Service

Catalogue, create the end point and change the Web Service Client endpoint. Service A only needs to

register its service in the Service Catalogue. All other interactions and code is the same as if the services

are addressed directly, i.e. all standard tools for creating Web Services/REST servers and clients can be

used with HTTP tunneling.

Tunneling URL specification

The tunneling URL always begins with the local NetworkManager Address, port and the path

/GRANDTunneling. For instance http://127.0.0.1:8082/GRANDTunneling. There are two basic ways to

create the rest of the URL, one when the Virtual Address is known and one where the URL contains a

Service Catalogue query.

Define recipient explicitly

The first most common case is when the URL is built using a known Virtual Address, i.e. it has been

retrieved using the service catalogue. In this case the URL follows the following format:

http://NetworkManagerAddress:Port/GRANDTunneling/senderAddress/recipientAddress

 senderAddress: The Virtual Address of the sender of the message. Alternatively one can use 0

which basically means anonymous sender

 recipientAddress: The Virtual Address of the recipient

Define recipient by attributes

It is also possible to have the NetworkManager execute a service search over the P2P network by

providing the search attributes in the URL. The generic format for this type of URL is as follows:

 http://NetworkManagerAddress:Port/GRANDTunneling/senderAddress{/default}{/1}?2

 {} are optional parameters.

 senderAddress: The Virtual Address of the sender of the message. Alternatively one can use 0

which basically means anonymous sender

 /default: if there are multiple options the first one should be selected. If this part is missing and

there are multiple options an error is returned

 /1: additional URL aimed for the registered service

 2: query of searchable attributes like description="calculator"&sid="eu.bridge.eventmanager" et

c. These attributes are the ones defined in the Network Manager Service Catalogue, see 2.2.1.

2.2 Service Catalogue

In the BRIDGE middleware two types of service catalogues exist that can be used for finding services:

http://127.0.0.1:8082/GrandTunneling

15

D05.2: BRIDGE Middleware Page 15 of 44

 The Network Manager Service Catalogue, which is synchronized in-between all the Network

Manager nodes.

 The IoT Resource Catalogue that contains more metadata and annotations of the services

available.

The reason for having two separate catalogues is performance, both for bandwidth as for lookup time.

Secondly each satisfies two distinct usage scenarios. The main usage scenario for the Network Manager

Service Catalogue is when the client knows exactly which type or instance of a service it wants to invoke,

i.e. when it is known at design time what service is to be invoked. The main usage scenario for the IoT

Resource Catalogue is when the client want to resolve services available in run time and invoke them

dynamically, i.e. it will use the metadata and service description to decide which service to invoke.

2.2.1 The Network Manager Service Catalogue

This service catalogue has always to be used when invoking services since all service invocations require

that Virtual Address of the invoked service is known. The catalogue is a simple attribute based description

of the service itself that can be searched. There are only two attributes that are mandatory and one

additional that is standardized but not mandatory:

 DESCRIPTION: The description of the service as a string, for instance

SharedDataspaceThales:WebService

 SID: The service identity, for instance urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1, this

attribute describes which interface/service is implemented. Several instances of services with

the same SID can coexist in the BRIDGE network.

 PID(Optional): Is a BRIDGE network unique id for this service. Useful for accessing a specific

instance of a service.

Apart from these attributes one can define any other suitable attributes when registering the service, see

Listing 1 below where HOST_NAME and START_TIME are added.

16

D05.2: BRIDGE Middleware Page 16 of 44

The main usage of the Network Manager Service Catalogue is to provide a simple and efficient way of

finding services when the caller knows what service it wants to find and then invoke. It is important to

note that the Network Manager Service Catalogue responds always based on the services currently

available and available to reach. If the BRIDGE network node becomes detached from the other nodes it

will only contain the locally accessible nodes. But as soon it reaches other nodes they will synchronise so

that all services on the other BRIDGE nodes are available. This provides the flexibility for applications to

determine what services they can call at a given moment making it possible to perform graceful

degradation.

//Connect to the Service Catalogue
ServiceCatalogue.NetworkManager sc = new ServiceCatalogue.NetworkManager();
//Using the local network manager
sc.Url = "http://localhost:9090/cxf/services/NetworkManager";

//Using the local network manager
ServiceCatalogue.Part[] parts = new ServiceCatalogue.Part[5];
ServiceCatalogue.Part p = new ServiceCatalogue.Part();
//Create the DESCRIPTION (Mandatory key)
p.key = "DESCRIPTION";
p.value = "S2D2SDevice:StaticWS";
parts[0] = p;

//Create the SID (Mandatory key), Service ID
p = new ServiceCatalogue.Part();
p.key = "SID";
p.value = "urn:http:ws:BRIDGE:Middleware:SharedDataSpace:1";
parts[1] = p;

//Create the PID (Optional key), Persistent ID. Needs to be a unique name on
the BRIDGE network.
p = new ServiceCatalogue.Part();
p.key = "PID";
p.value = "my unique id";
parts[2] = p;

//Examples of additional keys
p = new ServiceCatalogue.Part();
p.key = "HOST_NAME";
p.value = Environment.MachineName;
parts[3] = p;

p = new ServiceCatalogue.Part();
p.key = "START_TIME";
p.value = DateTime.Now.ToString(); ;
parts[4] = p;

//Make the registration
ServiceCatalogue.Registration rid = sc.registerService(parts, m_wsendpoint,
"eu.linksmart.network.grand.impl.GrandMessageHandlerImpl");

HID = rid.virtualAddressAsString;
System.Console.WriteLine("Virtual Address:" + HID);

Listing 1: Example of service registration in C#.

17

D05.2: BRIDGE Middleware Page 17 of 44

2.2.2 IoT Resource Catalogue

The IoT Resource Catalogue provides the means to store more elaborate metadata regarding the services

compared to the meta-date stored in the Network Manager Service Catalogue. The information in the IoT

Resource Catalogue is not synchronised in-between BRIDGE network nodes and the IoT Resource

Catalogue has to be found using the Network Manager Service Catalogue.

The IoT Resource Catalogue uses service descriptions that are expressed in an extended version of SCPD

(Service Control Protocol Description), which is the standard for service descriptions in DLNA/UPnP. An

example of the SCPD description is shown below in Listing 2.

The reason for using the extended SCPD format is that it is well defined, used for service discovery, and

that it is possible to describe services independently of their implementation. These properties enable to

describe REST based services which do not really have any established formal description language.

18

D05.2: BRIDGE Middleware Page 18 of 44

Listing 2: Example of a service description in SCPD

<?xml version="1.0" encoding="utf-8"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:IoTdevice:SharedDataSpace:1</deviceType>
 <gateway xmlns="IoT">AIRBUS</gateway>
 <status xmlns="IoT">web service initiated</status>
 <wsendpoint
xmlns="IoT">http://192.168.9.96:8081/S2D2SDevice/S2D2SService</wsendpoint>
 <virtualAddress xmlns="IoT">128.5151.99292.22222</virtualAddress>
 <networkmanager xmlns="IoT" />
 <friendlyName>S2D2SDevice</friendlyName>
 <manufacturer>BRIDGE Integration Meeting</manufacturer>
 <manufacturerURL>http://wwwcnet.se</manufacturerURL>
 <modelDescription>Proxy for S2D2s</modelDescription>
 <modelName>S2D2s</modelName>
 <modelNumber>1</modelNumber>
 <UDN>uuid:caae981e-cf1f-4cf5-bcc7-6849b45144b2</UDN>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-org:service:shareddataspace:1</serviceType>
 <serviceId>urn:upnp-org:serviceId:shareddataspace</serviceId>
 <scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action IoTannotation="">
 <name>ListSubscriptions</name>
 <argumentList>
 <argument>
 <name>subscriptions</name>
 <direction>out</direction>
 <retval />
 <relatedStateVariable>Subscriptions</relatedStateVariable>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="no">
 <name>Subscriptions</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
 </scpd>
 </service>
 </serviceList>
 </device>
</root>

19

D05.2: BRIDGE Middleware Page 19 of 44

There are two ways to register an IoTResource, i.e. service, with the IoT Resource Catalogue:

 UPnP Discovery using SSDP and SCPD

 SELF Registration

If an IoTResource supports the UPnP Protocol the IoTResource will register automatically with the IoT

Resource Catalogue. If a service is integrated into the BRIDGE network using the developer tools this

information will be created mostly automatically and the service will be discovered dynamically by UPnP

as well.

However, it also possible to manually register the service in the IoT Resource Catalogue by using the

RegisterResource action of the catalogue service of the IoTResourceCatalogue.

IoTResource Query Language

The IoTResource Catalogue provides a query language for finding IoTResources and their services. This

query language is based on the XPath language
2
 for querying XML documents. The queried XML

documents are IoTResource Description files which are based on the SCPD (Service Control Protocol

Description) from the UPnP-standard. The IoTResource Catalogue takes an XPath expression and applies

it to the SCPD document of the IoTResources. The IoTResources that matches the XPath expression are

then returned.

IoTResource retrieval

The XPath querying can be used directly in the REST URL:

http://<catalogueendpoint>/<xpathexpression

for example,

http://<catalogueendpoint>//UPnP: serviceType [.=’urn:schemas-upnp-org:service:shareddataspace:1’]

returns all IoTResources that of the catalogue at that support the service “urn:schemas-upnp-

org:service:shareddataspace:1”

http://192.168.9.15:44441/*

List all available resources

http://192.168.9.15:44441//UPnP:serviceType [.=’ urn:schemas-
upnp-org:service:shareddataspace:1’’]

List all shared dataspace
services known to the

catalogue

http://192.168.9.15:44441//upnp:device[upnp:manufacturer=’CNet
’]

List all resources from
manufacturer CNet

http://192.168.9.15:44441//upnp:device[upnp:manufacturer=’CNet

’][UPnP:serviceType [.=’ urn:schemas-upnp-
List all resources from

manufacturer CNet that are

2
 http://www.w3schools.com/xpath/

http://192.68.1.97:40678/*
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/upnp:device%5bupnp:manufacturer=’CNet’%5d%5bIoT:gateway%5b.=’KURSAAL’%5d%5bIoT:currentconsumption%3e100
http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

20

D05.2: BRIDGE Middleware Page 20 of 44

org:service:shareddataspace:1’’]

shared data space services

All the methods are available in the WebService interface as well. The full documentation for the IoT

Resource Catalogue service interface is in section 3.2.

2.3 The Shared Dataspace

The main purpose of the Shared Dataspace is to provide common storage within the BRIDGE network

and also to provide a publish/subscribe based service for distribution of data as well as events. The actual

implementation of the shared dataspace in BRIDGE is called S2D2S.

The S2D2S distributed dataspace has a relatively simple interface for publishing and retrieving data. The

dataspace offers a mechanism to persist and forward data using a variety of infrastructures.

Depending on how the dataspace is configured, there may be one or more entry points to the dataspace. In

the BRIDGE middleware, each S2D2S entry point is represented as a LinkSmart virtual device and offers

access to the publish/subscribe API of S2D2S. Each cluster or subnet may have a dedicated entry point

device to provide access to users of LinkSmart on the same network. However, internally these entry

points could all be connected over the LinkSmart infrastructure.

From a user perspective there is not much difference between accessing one entry point or the other: the

API will look exactly the same. However, the distribution of data may vary between clusters, so that

actual data that can be seen could differ between entry points.

In order to ensure interoperability between different users of the dataspace (i.e. the agent platforms and

other supporting systems) S2D2S offers a REST API based on JSON-RPC. This API is accessed via

LinkSmart using a binding to a virtual S2D2S device. The REST API supports the following operations:

Method Description Parameters

Publish Publish content to a specific topic  String topic: topic to publish data

 String contentType: type of data to

publish

 String payLoad: data to publish in

S2D2S

 String metadata: Additional data

describing the payload

 String persist: If true the data will be

stored, if false the data will not be

query able. False is used when one

only wants to use publish/subscribe.

 String itemId: If supplied this will

replace the stored value of the

instance with itemId.

http://192.68.1.97:40678/IoT:gateway%5b.=’KURSAAL

21

D05.2: BRIDGE Middleware Page 21 of 44

subscribe Subscribe to a specific topic.  String topic: topic to subscribe

 String url: callback URL address for

notifications

 String filter: Filter on specific attributes

or content.

unsubscribe Unsubscribe a specific subscription  String subscriptionid

Query Query a topic for specific content  String topic: the topic to search for

data

 String filter: Filter on specific attributes

or content.

list_subscriptions Return a list of all active

subscriptions.


removeByQuery Remove specific content from a

specific topic.

 String topic: the topic to search for

data to be deleted

 String filter: Filter on specific attributes

or content for the deletion.

Table 1: S2D2S operations

These operations can all be accessed via JSON-RPC requests. The operations should be specified in the

“method” fields and the parameters should be placed in the “params” map:

subscribe: registers an endpoint that will be notified when data changes

{

 "method": "subscribe",

 "params": {

 "topic": “App.Bridge.Some.Topic”

 "url": "http://linksmart.address/callback"

 }

 }

The publish method writes data into a topic. If there are any clients that used the subscribe operation for

that particular topic, a notification of the new data is pushed to the URL of each subscribed user. Other

users may use the query operation to inspect the topics periodically. This will enable users to search

through all data (if it was persisted and has not been removed yet).

2.3.1 The Shared Dataspace proxy

A proxy was developed to make the S2D2S part of the BRIDGE network. The proxy enabled the

registration of S2D2S in the service catalogue as well as the managing of the creation of HTTP tunneling

URLs, see Figure 5.

22

D05.2: BRIDGE Middleware Page 22 of 44

Shared Dataspace Node

S2D2s Service S2D2S Proxy

Network Manager

Service
Catalogue

Direct REST calls

Notifications to subscribers

Figure 5: The shared dataspace proxy

The shared dataspace proxy called S2D2S Proxy registers the services in the Service Catalogues, both its

own services as well as the direct REST interface to the S2D2s. This makes it possible for clients directly

to find the REST service in the service catalogue and to invoke it using HTTP tunneling, thus bypassing

the proxy.

The important part of the proxy is to automate the usage of the BRIDGE P2P network tunneling. Any

client making a subscription provides its virtual address to the proxy that then creates the callback URL

pointing to correct BRIDGE network tunnel endpoint. This means that all notifications to the subscribers

go directly to the Network Manager for tunneling without needing to pass the proxy, see Figure 5.

For the actual documentation of the Shared Data Space proxy class see section 3.3.

2.4 On-Site Storage Service

The On-Site Storage Server provides a generic way of publishing data as links in the BRIDGE network,

i.e. this enables the publication of larger pieces of data, such as images, without putting additional load on

the BRIDGE network. Data will not be transmitted before somebody actually requests it.

The On-Site Storage Service uses the BRIDGE link format to express links.

2.4.1 BRIDGE Link Format

The BRIDGE link format is intended to be used when distributing links to be used for access to data that

could be retrieved via the BRIDGE network.

23

D05.2: BRIDGE Middleware Page 23 of 44

The format is designed using a very simple schema. This allows a client to have multiple link instances to

the same target data resource but in possibly different resolutions or formats (depending on target data

type).

Figure 6: BRIDGE Link schema

One Link consists of a Url that can be used to retrieve the data, Size in bytes of the data, Mimetype of the

target data and an optional description attribute. This makes it possible to create a link that contains

multiple resolutions and data formats and it is up to the consumer to decide if and what to retrieve from

the source.

Figure 7: BRIDGE Link instance

Note that links expressed in the BRIDGE Link format cab either be expressed as standard URLs or that

can be expressed using the Virtual Address Scheme, in Figure 7 above the links use the Virtual Address

based HTTP Tunneling format described in section 2.1.8.

24

D05.2: BRIDGE Middleware Page 24 of 44

2.4.2 Usage of On-Site Storage

The On-Site Storage component can be used and configured in many ways. All uses involve services that

have data that needs to be published on the BRIDGE network.

BRIDGE Network

Shared
Dataspace

ConsumerConsumer

On-Site
Storage

Event with BRIDGE link

Event with BRIDGE Link

Create BRIDGE Link

Figure 8: Example of BRIDGE On-Site Storage deployment

Figure 8 above is an example of the use of the On-Site Storage. In this case a service has a large piece of

data that it wants publish on the network. Note that the service itself does not have its own HTTP based

web server, instead it asks the On-Site storage to host the data. The On-Site storage stores the data and

returns the BRIDGE Links that can be used to retrieve the data. The BRIDGE Links are then used as part

of messages sent to be shared on the network. Finally a consumer of the information can decide to retrieve

the data using the BRIDGE Link. This data will then be retrieved from the On-Site Storage component.

Note that the On-Site Storage component should be running in the same P2P node as the service that

wants to publish the information if one wants to keep the communication overhead low. So the On-Site

storage component is not a singular component in the network, instead all services that want to use the

functionality should create their own instance locally.

The On-Storage component can also act passively and be used for registering an existing WWW based

server and manage the registrations in the Service Catalogue as well as creating BRIDGE Link formatted

links when the service needs them.

25

D05.2: BRIDGE Middleware Page 25 of 44

The third deployment option is that the On-Site Storage can be used to manage a complete directory

structure, like a web server, making all of the information available for retrieval on the BRIDGE network.

In this case the consumers would only need to use the service catalogue to find the appropriate endpoint

and then by adding paths to the HTTP tunneling URL

The full documentation of the On-Site storage service is available in section 3.4.

2.5 Transformation Services

The Transformation Services within BRIDGE are used for transforming in-between different data formats

and protocols. Since there is a wide array of different needs for transformations depending on usage

scenarios the Transformation Services is not a singular service, rather it is a toolbox with different tools

that can be applied depending on the needs and situation.

In BRIDGE two main types of Transformation Services were developed:

 Format Transformation: This is a set of templates for creating transformations to a specific target

format.

 Protocol Transformation: A set of classes that can be used when developing tools and integrating

systems into the BRIDGE platform.

The following subsections will outline the functionality of these libraries with examples.

2.5.1 Format Transformation

Format Transformation is a set of templates based on the W3C standard XSLT (Extensible Stylesheet

Language Transformations). The templates are meant to be used by developers when they need to

transform data into a specific format, for instance EDXL-RM. These templates provide the basic bolts for

creating the correct output format and also include extension functions to the XSLT language for BRIDGE

specific parts.

An example of a template is shown below in Listing 3.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"
>

 <xsl:output method="xml" indent="yes"/>
 <xsl:param name="urlEnd" select="'?Description=Asa:Webserver'"/>
 <xsl:param name="messageGuid" select="'3F2504E0-4F89-41D3-9A0C-0305E82C3301'"/>
 <xsl:param name="webPath" select="'/StaticImage/'"/>
 <xsl:param name="urlStem" select="'http://127.0.0.1:8082/GRANDunneling/0/'"/>
 <xsl:param name="fileName" select="'image2.jpg'"/>
 <xsl:param name="timeNow" select="'2014-06-18T22:23:12.573Z'"/>
 <xsl:template match="/">
 <EDXLDistribution xmlns='urn:oasis:names:tc:emergency:EDXL:DE:1.0'>
 <distributionID>
 <xsl:value-of select='$messageGuid'/>
 </distributionID>
 <senderID>ASA@bridgeproject.eu</senderID>
 <dateTimeSent>
 <xsl:value-of select='$timeNow'/>
 </dateTimeSent>
 <distributionStatus>Exercise</distributionStatus>
 <distributionType>Request</distributionType>
 <combinedConfidentiality>UNCLASSIFIED AND NOT SENSITIVE</combinedConfidentiality>
 <language>EN</language>
 <contentObject>

26

D05.2: BRIDGE Middleware Page 26 of 44

 <contentDescription>MEXL-UAVStaticImageUpdate</contentDescription>
 <contentKeyword>
 <valueListUrn>http://icnet.mitre.org/ValueLists/ContentKeywords</valueListUrn>
 <value>MEXL-UAVStaticImageUpdate</value>
 </contentKeyword>
 <xmlContent>
 <embeddedXMLContent>
 <UAVStaticImageUpdate xmlns='urn:BRIDGE:ASA'>
 <ImagePosition xmlns=''>
 <xsl:variable name ='firstCoord' select='substring(.//PositionContent,2)' />
 <gml:Point xmlns:gml='http://www.opengis.net/gml'>
 <gml:pos>
 <xsl:value-of select='translate(substring-before($firstCoord,"]"),","," ")'/>
 </gml:pos>
 </gml:Point>
 </ImagePosition>
 <SituationObservation xmlns=''>
 <ObservationText>
 <xsl:value-of select='.//Description'/>
 </ObservationText>
 <TimeStamp>
 <xsl:value-of select='.//TimeStampContent'/>
 </TimeStamp>
 <bridge:Links xmlns:bridge="urn:bridge:link">
 <bridge:Link description="UAV Image">
 <bridge:Url>
 <xsl:value-of select="concat($urlStem,$webPath,$fileName,$urlEnd)"/>
 </bridge:Url>
 <bridge:Size>58937392</bridge:Size>
 <bridge:Mimetype>image/png</bridge:Mimetype>
 </bridge:Link>
 </bridge:Links>
 </SituationObservation>
 </UAVStaticImageUpdate>
 </embeddedXMLContent>
 </xmlContent>
 </contentObject>
 </EDXLDistribution>
 </xsl:template>
</xsl:stylesheet>

Listing 3: Example of a Transformation template

This template is actually used when the UAV transforms its internal UAV static image format into an

EDXL-DE based message. The different parts of the transformation are:

 First there is the parameter definition with default values, these values are easily

interchangeable.

 Secondly there is an EDXL-DE envelope created with the correct format and namespaces

containing all necessary information to create a valid message.

 Thirdly there is an XML content object which is UAV specific.

 Finally inside it there is a BRIDGE Link created that will point to the actual image.

These templates can be reused in different applications, but they will always be specific in the sense that

they will reflect the structure of the incoming format. However if the incoming format is well defined and

used by many components the template is completely reusable.

2.5.2 Protocol Transformation

As protocol transformation is hard to make completely generic within a middleware environment, we

instead choose to develop modules that can be used for this transformation. These modules are used by the

developer at development time. The developer tools provide support for selecting and integrating these

27

D05.2: BRIDGE Middleware Page 27 of 44

protocol transformations, the developer tools are explained in deliverable D8.2. Of course the tools are

extendable and can be adapted with new Protocol Transformation components.

2.6 Agent Interoperability

Part of the BRIDGE platform functionality will be provided by software agent-platforms. These agent-

platforms are provided by various partners and have specific internal architectures. To ensure that agents

on different platforms are able to communicate with each other, and also to ensure that in the future other

agent platforms will be able to join the BRIDGE platform, a standard method of information exchange is

required.

As input for the agent interoperability the standards created by the Foundation for Intelligent Physical

Agents (http://www.fipa.org/) were used as a baseline. The FIPA Specifications that are related to

enabling agent-agent communication across platform boundaries are:

1. ACL Message Structure (SC00061G)

Defines a set of message fields that allow flexible exchange of messages between agents.

2. Agent Message Transport Service (SC00067F)

Provides a reference model for an agent Message Transport Service and a specification for

message transport information (as an envelope around the FIPA ACL Message).

3. Message Transport Protocol for HTTP (SC00084F)

Specifies the transport of messages between platforms over HTTP.

4. FIPA Communicative Act Library (CAL) Specification (SC00037J)

Defines a library of standard communicative acts that can be used by agents.

5. ACL Message Representation in String Specification (SC00070I)

Defines the syntax of the FIPA ACL in string form.

Using ACL Message Structure (SC00061G) the decision was connect the different agent platforms using

JSON-RPC as the underlying protocol. A basic API and message structure have been agreed upon to

exchange information. The API allows for an agent-platform to request a (JSON-RPC) communication

endpoint at another platform, based on a specified endpoint type. Each created endpoint then implements a

simple message passing interface to receive messages and replies to messages. This approach allows for

agent-platforms to choose whether to expose a single endpoint (and return this endpoint upon each

incoming creation request, and internally route/deliver the message to the correct agent), or for example to

create a new agent for each endpoint creation request (and allow for messages to be delivered directly to

the agent from the outside). The interface is specified below:

create: Returns the URL of a JSON-RPC endpoint

{

 "method": "create",

 "params": {

 "type": <integer indicating endpoint type>,

 "url": <supply reverse JSON-RPC contact URL here>

 }

}

28

D05.2: BRIDGE Middleware Page 28 of 44

postMsg / postReply: Returns status indicating successful reception of message

{

 "method": "postMsg/postReply",

 "params": {

 "message": {

 "header": {

 "msg_type": <integer indicating message type>

 }

 "body": { <message specific content> }

 }

 }

 }

29

D05.2: BRIDGE Middleware Page 29 of 44

3 Software Components

3.1 Network Manager Service Catalogue API

getService
 eu.linksmart.network.VirtualAddress getService()

 throws java.rmi.RemoteException

 Retrieves VirtualAddress of NetworkManagerCore instance.

Returns:

 VirtualAddress of NetworkManagerCore instance

Throws:

 java.rmi.RemoteException

registerService
 eu.linksmart.network.Registration registerService(eu.linksmart.utils.Part[] attributes,

 java.lang.String endpoint,

 java.lang.String backboneName)

 throws java.rmi.RemoteException

 Creates a VirtualAddress for a particular service.

Parameters:

 attributes - Attributes such as PID (which should be unique) or description

 endpoint - Backbone specific endpoint for the service, e.g. URL or JXTA id

 backboneName - Class name of the Backbone from which this service is reachable

Returns:

 VirtualAddress instance.

Throws:

 java.rmi.RemoteException

removeService
 boolean removeService(eu.linksmart.network.VirtualAddress virtualAddress)

 throws java.rmi.RemoteException

 Removes a particular service from internal memory

Parameters:

 virtualAddress - for particular service.

Returns:

 TRUE if operation succeeded and FALSE if not.

Throws:

 java.rmi.RemoteException

getAvailableBackbones
 java.lang.String[] getAvailableBackbones()

 throws java.rmi.RemoteException

 Provides the list of names of communication channels or backbones the NetworkManager supports. This

information can be used by a service to decide which channel to register over.

Returns:

 Class names of the connected Backbones

30

D05.2: BRIDGE Middleware Page 30 of 44

Throws:

 java.rmi.RemoteException

getServiceByAttributes
 eu.linksmart.network.Registration[] getServiceByAttributes(

 eu.linksmart.utils.Part[] attributes)

 throws java.rmi.RemoteException

Simplest method to get services which match given attributes. If one or more services with these particular

attributes are found, an array containing the registrations of services is returned. If a service does not

contain all attributes that were used for the search (e.g. the service does not contain an attribute

"description"), but the values of the other required attributes match, the service will be returned. If it has

all attributes, but not all values of these attributes match the required values, the service is not returned.

Method will wait default timeout to discover a remote set of registrations.

Parameters:

 attributes - The attributes the service is supposed to have

Returns:

 The services as registration objects, containing virtual addresses and attributes

Throws:

 java.rmi.RemoteException

getServiceByAttributes
 eu.linksmart.network.Registration[] getServiceByAttributes(

 eu.linksmart.utils.Part[] attributes,

 long timeOut,

 boolean returnFirst,

 boolean isStrictRequest)

 throws java.rmi.RemoteException

Method to get services with given attributes. Requires additional parameters to control in detail how to

search and what services to search for.

Parameters:

 attributes - The attributes the service should have

 timeOut - Time to wait for discovery responses

 returnFirst - If true, method will stop searching when one service is found. If more than one service is

found at the same time, the other services will be returned as well.

 isStrictRequest -

 true - only services will be discovered which possess all attributes

 false - attribute types which a service does not have are ignored as long there is at least one matching

attribute

Returns:

 The services with matching attributes as registration objects. Even if returnFirst is set true more than one

registration of services may be available.

Throws:

 java.rmi.RemoteException

31

D05.2: BRIDGE Middleware Page 31 of 44

getServiceByPID
 eu.linksmart.network.Registration getServiceByPID(java.lang.String PID)

 java.lang.IllegalArgumentException,

 java.rmi.RemoteException

 Gets the VirtualAddress for the available service with a given PID.

Parameters:

 PID - The persistent identifier of the service.

Returns:

 The Registration object, null if no VirtualAddress exists for the given PID.

Throws:

 java.rmi.RemoteException

 java.lang.IllegalArgumentException

getServiceByDescription
 eu.linksmart.network.Registration[] getServiceByDescription(java.lang.String description)

 java.rmi.RemoteException

 Gets the Registration for the available service(s) with a given description.

Parameters:

 description - The required service description.

Returns:

 The services with matching descriptions as registration objects

Throws:

 java.rmi.RemoteException

getServiceByQuery
 eu.linksmart.network.Registration[] getServiceByQuery(java.lang.String query)

 java.rmi.RemoteException

 Gets the registration objects for the locally available services matching the passed query. Remote services

cannot be tested against the query containing other attributes than 'description'. This method should only

be used by advanced developers.

Parameters:

 query - The formulated query.

Returns:

 The matching services as registration objects

Throws:

 java.rmi.RemoteException

sendData

 eu.linksmart.network.NMResponse sendData(eu.linksmart.network.VirtualAddress sender,

 eu.linksmart.network.VirtualAddress receiver,

32

D05.2: BRIDGE Middleware Page 32 of 44

 byte[] data,

 boolean synch)

 throws java.rmi.RemoteException

 Send data from one LinkSmart node to another node.

Parameters:

 sender - The virtual address of the sender

 receiver - The virtual address of the receiver

 data - The data to be sent

 synch - boolean indicating whether method call should be synchronous or asynchronous

Returns:

 Response instance

Throws:

 java.rmi.RemoteException

3.2 IoT::IoTResourceCatalogue Class Reference

The IoT Resource Catalogue manages all knowledge regarding IoTResources that have been discovered

and are active in the network. The IoT Resource Catalogue knows about IoTResources from a network

perspective but does not handle the locations or context of the IoTResources.

Public Member Functions

o void ResolveIoTResources (System.String gateway, System.String discovermanagertype)

Initiates a resolve process for unresolved IoTResources of a certain type on a specific gateway.

o void DiscoverIoTResources (System.String gateway)

Initiates a discovery process on a specific gateway. The discovery will be done for all types of

IoTResources.

o string ProcessErrorMessage (string IoTResourceId, string theMessage)

Process an errormessage from a specifc device and returns the result.

o string GetDeviceXML (string IoTResourceId, string idtype)

Gives an XML description of a device in SCPD (Service Control Point Document) format.

o string GetIoTIoTResources (string gateway)

Gives a list of XML descriptions for all IoTResources at a gateway.

o string GetIoTIoTResourcesFromXpath (string xpath)

Gives a list of XML descriptions for all IoTResources based on a XPath selection.

o string GetIoTIoTResourcesEndpoints (string gateway)

Gives a list of web service endpoints for all IoTResources at a gateway.

o string GetIoTIoTResourcesFromType (string gateway, string devicetype)

Gives a list of XML descriptions for all IoT IoTResources at a gateway based on the device type.

o string InvokeIoTService (string IoTResourceId, string idtype, string method, string arguments)

Allows invocation of any method offered in the general IoT service of a device.

o string InvokeService (string IoTResourceId, string idtype, string serviceid, string method, string arguments)

Allows invocation of any method offered in any service of a device.

o string InvokeServiceXPath (string xpath, string serviceid, string method, string arguments)

33

D05.2: BRIDGE Middleware Page 33 of 44

Allows invocation of any method offered in any service on a set of IoTResources selected by an Xpath

expression.

o string AddDevice (string devicedescription)

Allows manual adding of IoTResources to the network that cannot be discovered using the default

discovery protocol.

o void RemoveDevice (string IoTResourceId, string idtype)

Removes a device from the IoT Resource Catalogue and stops the device.

o string GetIoTURLsFromXpath (string xpath, string VirtualAddressType, string sender, string

callerNMSoapTunelUriURL)

Returns a list of IoT encoded urls for the IoTResources that match xpath.

o bool IsRegistered (string VirtualAddress)

Tells if a device with a given IoT ID is registered with the catalogue.

o string GetWSEndpoint (string IoTResourceId, string idtype)

Returns the web service endpoint for a given device.

o string GetIoTWSEndpoint (string IoTResourceId, string idtype)

Returns the endpoint for the generic IoT web service a given device.

o string GetWSDL (string IoTResourceId, string idtype)

Returns the WSDL description of a given device.

o void StartIoTResources (string xpath)

Starts IoTResources that match a given xpath expression. The expression is applied to the SCPD XML

of the device.

o void StopIoTResources (string xpath)

Stops IoTResources that match a given xpath expression. The expression is applied to the SCPD XML

of the device.

o string GetVirtualAddress (string application, string devicelocalid)

Returns the VirtualAddress for a device based on the local application id assinged to IoTResources.

o string GetVirtualAddresssFromXPath (string application, string xpath, string VirtualAddressType)

Returns the VirtualAddress for a device based on an xpath description which is applied to the SCPD

devoce model.

Detailed Description

The IoT Resource Catalogue manages all knowledge regarding IoTResources that have been discovered

and are active in the network. The IoT Resource Catalogue knows about IoTResources from a network

perspective but does not handle the locations or context of the IoTResources.

Member Function Documentation

void IoT::IoTResourceCatalogue::ResolveIoTResources (System.String gateway, System.String

discovermanagertype) [inline]

Initiates a resolve process for unresolved IoTResources of a certain type on a specific gateway.

Parameters:

34

D05.2: BRIDGE Middleware Page 34 of 44

gateway The gateway for physical IoTResources
discovermanagertype The discovery manager which should resolve the IoTResources, for instance

BluetoothDiscoverymanager,

void IoT::IoTResourceCatalogue::DiscoverIoTResources (System.String gateway) [inline]

Initiates a discovery process on a specific gateway. The discovery will be done for all types of IoTResources.

Parameters:

gateway The gateway for physical IoTResources, where to do a discovery process

string IoT::IoTResourceCatalogue::ProcessErrorMessage (string IoTResourceId, string theMessage)
[inline]

Process an errormessage from a specific device and returns the result.

Parameters:

IoTResourceId The unique Virtual Address for the device

theMessage The error message

string IoT::IoTResourceCatalogue::GetDeviceXML (string IoTResourceId, string idtype) [inline]

Gives an XML description of a device in SCPD (Service Control Point Document) format.

Parameters:

IoTResourceId The an id for the IoTResource

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

Returns:

A string with an SPCD XML for the device

string IoT::IoTResourceCatalogue::GetIoTIoTResources (string gateway) [inline]

Gives a list of XML descriptions for all IoTResources at a gateway.

Parameters:

gateway The name of the gateway

Returns:

A string with SPCD XML:s for all IoTResources at gateway

string IoT::IoTResourceCatalogue::GetIoTIoTResourcesFromXpath (string xpath) [inline]

Gives a list of XML descriptions for all IoTResources based on a XPath selection.

Parameters:

xpath An XPath expression that will be applied to the device XML as a selection filter. IoTResources that match the
Xpath expression, will be selected.

Returns:

35

D05.2: BRIDGE Middleware Page 35 of 44

A string with SPCD XML:s for all IoTResources at gateway

string IoT::IoTResourceCatalogue::GetIoTIoTResourcesEndpoints (string gateway) [inline]

Gives a list of web service endpoints for all IoTResources at a gateway.

Parameters:

gateway The name of the gateway,if empty it will return IoTResources for all gateways

Returns:

An XML string with pairs of device id:s and their web service endpoints

string IoT::IoTResourceCatalogue::GetIoTIoTResourcesFromType (string gateway, string devicetype)
[inline]

Gives a list of XML descriptions for all IoT IoTResources at a gateway based on the device type.

Parameters:

gateway The name of the gateway,if empty it will return IoTResources for all gateways
devicetype A device URN

Returns:

A string with SPCD XML:s for all IoTResources that match the device type

string IoT::IoTResourceCatalogue::InvokeIoTService (string IoTResourceId, string idtype, string method,

string arguments) [inline]

Allows invocation of any method offered in the general IoT service of a device.

Parameters:

IoTResourceId The id for the device

idtype The type of identfier used, values could be UDN, FriendlyName, or Virtual Address
method The method to invoke

arguments Arguments to use following the format: par1=12;par2=mystring;par3=45

Returns:

A string with the result of the invocation

string IoT::IoTResourceCatalogue::InvokeService (string IoTResourceId, string idtype, string serviceid,

string method, string arguments) [inline]

Allows invocation of any method offered in any service of a device.

Parameters:

IoTResourceId The id for the device

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address
serviceid The serviceid following the format "urn:upnp-org:serviceId:weatherservice:thermometer:1"

method The method to invoke

arguments Arguments to use following the format: par1=12;par2=mystring;par3=45

36

D05.2: BRIDGE Middleware Page 36 of 44

Returns:

A string with the result of the invocation

string IoT::IoTResourceCatalogue::InvokeServiceXPath (string xpath, string serviceid, string method,

string arguments) [inline]

Allows invocation of any method offered in any service on a set of IoTResources selected by an Xpath

expression.

Parameters:

xpath An xpath expression to select IoTResources for which the method invocation should be done

serviceid The serviceid following the format "urn:upnp-org:serviceId:weatherservice:thermometer:1"
method The method to invoke

arguments Arguments to use following the format: par1=12;par2=mystring;par3=45

Returns:

A string with the result of the invocation

A string with the result of the invocation

string IoT::IoTResourceCatalogue::AddDevice (string devicedescription) [inline]

Allows manual adding of IoTResources to the network that cannot be discovered using the default discovery

protocol.

Parameters:

devicedescription An SPCD description of the device to be added

void IoT::IoTResourceCatalogue::RemoveDevice (string IoTResourceId, string idtype) [inline]

Removes a device from the IoT Resource Catalogue and stops the device.

Parameters:

IoTResourceId The id for the device

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string IoT::IoTResourceCatalogue::GetIoTURLsFromXpath (string xpath, string VirtualAddressType,

string sender, string callerNMSoapTunelUriURL) [inline]

Returns a list of IoT encoded urls for the IoTResources that match xpath.

Parameters:

xpath Valid xpath expression
VirtualAddressType The type ofVirtualAddressused

sender TheVirtualAddressof the sender, normally an empty string

callerNMSoapTunelUriURL The url for the callers SOAP tunnel, if null is sent in

http://localhost:8082/GRANDTunneling/ is used

bool IoT::IoTResourceCatalogue::IsRegistered (string VirtualAddress) [inline]

Tells if a device with a given IoT ID is registered with the catalogue.

37

D05.2: BRIDGE Middleware Page 37 of 44

Parameters:

Virtual Address The id for the device

Returns:

True if a device with the Virtual Address is registered otherwise false

string IoT::IoTResourceCatalogue::GetWSEndpoint (string IoTResourceId, string idtype) [inline]

Returns the web service endpoint for a given device.

Parameters:

IoTResourceId The id for the device
idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string IoT::IoTResourceCatalogue::GetIoTWSEndpoint (string IoTResourceId, string idtype) [inline]

Returns the endpoint for the generic IoT web service a given device.

Parameters:

IoTResourceId The id for the device

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

string IoT::IoTResourceCatalogue::GetWSDL (string IoTResourceId, string idtype) [inline]

Returns the WSDL description of a given device.

Parameters:

IoTResourceId The id for the device

idtype The type of identifier used, values could be UDN, FriendlyName, or Virtual Address

void IoT::IoTResourceCatalogue::StartIoTResources (string xpath) [inline]

Starts IoTResources that match a given xpath expression. The expression is applied to the SCPD XML of the

device.

Parameters:

xpath A valid Xpath expression

void IoT::IoTResourceCatalogue::StopIoTResources (string xpath) [inline]

Stops IoTResources that match a given xpath expression. The expression is applied to the SCPD XML of the

device.

Parameters:

xpath A valid Xpath expression

string IoT::IoTResourceCatalogue::GetVirtualAddress (string application, string devicelocalid) [inline]

Returns the Virtual Address for a device based on the local application id assigned to IoTResources.

38

D05.2: BRIDGE Middleware Page 38 of 44

Parameters:

application The application were the device resides

devicelocalid The local id for the device within the application for instance MyDiscoBall

string IoT::IoTResourceCatalogue::GetVirtualAddresssFromXPath (string application, string xpath, string

VirtualAddressType) [inline]

Returns the Virtual Address for a device based on an xpath description which is applied to the SCPD device

model.

Parameters:

application The application were the device resides

xpath a valid xpath expression

3.3 Shared Dataspace Class Reference

This class implements the proxy for the shared dataspace.

Public Member Functions

o void publish (System.String topic, System.String contentType, System.String metadata, System.String payLoad,

System.String persist, System.String itemId)

Publishes on the specified topic.

o void query (System.String topic, System.String filter, out System.String dataItem)

Queries the specified topic.

o void subscribe (System.String topic, System.String filter, System.String callBack)

Subscribes the specified topic.

o void unSubscribe (System.String subscriptionId)

Unsubscribe.

o void Remove (System.String Topic, System.String ItemId)

Removes the specified data item.

o System.String ListSubscriptions ()

Lists all the subscriptions.

o System.String subscribeWithServiceFilter (System.String topic, System.String filter, System.String Filter)

Subscribes to the topic with a filter.

Detailed Description

This class implements the proxy for the shared dataspace.

39

D05.2: BRIDGE Middleware Page 39 of 44

Member Function Documentation

void SharedDateSpaceNS::SharedDataspace::publish (System.String topic, System.String

contentType, System.String metadata, System.String payLoad, System.String persist,

System.String itemId) [inline]

Publishes on the specified topic.

Parameters:

topic The topic.

contentType Type of the content.

metadata The metadata.

payLoad The pay load.

persist The persist.

itemId The item identifier.

void SharedDateSpaceNS::SharedDataspace::query (System.String topic, System.String filter, out

System.String dataItem) [inline]

Queries the specified topic.

Parameters:

topic The topic.

filter The filter.

dataItem The data item.

void SharedDateSpaceNS::SharedDataspace::subscribe (System.String topic, System.String filter,

System.String callBack) [inline]

Subscribes the specified topic.

Parameters:

topic The topic.

filter The filter.

callBack The call back.

void SharedDateSpaceNS::SharedDataspace::unSubscribe (System.String subscriptionId)
[inline]

Unsubscribe.

Parameters:

subscriptionId The subscription identifier.

void SharedDateSpaceNS::SharedDataspace::Remove (System.String Topic, System.String ItemId)
[inline]

Removes the specified data item.

40

D05.2: BRIDGE Middleware Page 40 of 44

Parameters:

Topic The topic.

ItemId The item identifier.

System.String SharedDateSpaceNS::SharedDataspace::ListSubscriptions () [inline]

Lists all the subscriptions.

Returns:

System.String SharedDateSpaceNS::SharedDataspace::subscribeWithServiceFilter (System.String

topic, System.String filter, System.String Filter) [inline]

Subscribes to the topic with a filter.

Parameters:

topic The topic.

filter The filter.

Filter The filter.

Returns:

3.4 OnSiteStorage Class Reference

3.4.1 OnSiteStorage::FileInfo Class Reference

Public Member Functions

o FileInfo ()

o FileInfo (string fileLocation, string size, string mimetype, string description)

Initializes a new instance of the FileInfo class.

Properties

o string Filelocation [get, set]

Gets or sets the filelocation.

o string Mimetype [get, set]

Gets or sets the mimetype.

o string Size [get, set]

Gets or sets the size.

o string Description [get, set]

Gets or sets the description.

41

D05.2: BRIDGE Middleware Page 41 of 44

Constructor & Destructor Documentation

OnSiteStorage::FileInfo::FileInfo () [inline]

OnSiteStorage::FileInfo::FileInfo (string fileLocation, string size, string mimetype, string

description) [inline]

Initializes a new instance of the FileInfo class.

Parameters:

fileLocation The file location.

size The size.

mimetype The mimetype.

description The description.

Property Documentation

string OnSiteStorage::FileInfo::Filelocation [get, set]

Gets or sets the filelocation.

The filelocation.

string OnSiteStorage::FileInfo::Mimetype [get, set]

Gets or sets the mimetype.

The mimetype.

string OnSiteStorage::FileInfo::Size [get, set]

Gets or sets the size.

The size.

string OnSiteStorage::FileInfo::Description [get, set]

Gets or sets the description.

The description.

42

D05.2: BRIDGE Middleware Page 42 of 44

3.4.2 OnSiteStorage::OnSiteStorage Class Reference

This is the interface for the On-Site Storage Manager.

Public Member Functions

o bool ConnectToNetwork (string SID, string description, out string VirtualAddress)

Connects the On-Site storage to the network and registers in the Service Catalogue.

o bool DeConnectFromNetwork ()

Removes the On-Site storage from the network and deregisters from Service Catalogue.

o bool CreateNetworkRegistration (string SID, string description, string endpoint, out string

VirtualAddress)

Creates the network registration for an existing HTTP based service.

o bool DeleteNetworkRegistration (string VirtualAddress)

Deletes the network registration in the service catalogue.

o bool StartPublishing (int port)

Starts the internal HTTP server in On-Site storage.

o bool StopPublishing ()

Stops the publishing.

Private Member Functions

o XmlDocument CreateBRIDGELink (FileInfo[] dataItem)

Creates the BRIDGE link.

o string PublishData (FileInfo[] dataItems, out XmlDocument BRIDGELink)

Publishes the data.

o bool UnPublishData (string dataId)

Removes published data.

o FileInfo[] ListAllPublishedData ()

Lists all data published in the On-Site Storage.

Detailed Description

This is the interface for the On-Site Storage Manager.

Member Function Documentation

bool OnSiteStorage::OnSiteStorage::ConnectToNetwork (string SID, string description,

out string VirtualAddress) [inline]

Connects the On-Site storage to the network and registers in the Service Catalogue.

Parameters:

SID The sid.

description The description.

VirtualAddress The virtual address for started service.

Returns:

true if successfully registered

43

D05.2: BRIDGE Middleware Page 43 of 44

bool OnSiteStorage::OnSiteStorage::DeConnectFromNetwork () [inline]

Removes the On-Site storage from the network and deregisters from Service Catalogue.

Returns:

bool OnSiteStorage::OnSiteStorage::CreateNetworkRegistration (string SID, string

description, string endpoint, out string VirtualAddress) [inline]

Creates the network registration for an existing HTTP based service.

Parameters:

SID The sid.

description The description.

endpoint The endpoint of the HTTP service.

VirtualAddress The virtual address.

Returns:

true if successfully registered

bool OnSiteStorage::OnSiteStorage::DeleteNetworkRegistration (string VirtualAddress)
[inline]

Deletes the network registration in the service catalogue.

Parameters:

VirtualAddress The virtual address.

Returns:

true if successfully deregistered

bool OnSiteStorage::OnSiteStorage::StartPublishing (int port) [inline]

Starts the internal HTTP server in On-Site storage.

Parameters:

port The port to be used

Returns:

TRUE if successful

bool OnSiteStorage::OnSiteStorage::StopPublishing () [inline]

Stops the publishing.

Returns:

TRUE if successful;

44

D05.2: BRIDGE Middleware Page 44 of 44

XmlDocument OnSiteStorage::OnSiteStorage::CreateBRIDGELink (FileInfo[] dataItem)
[inline, private]

Creates the BRIDGE link.

Parameters:

dataItems The data items to part of the BRIDGE link

Returns:

The BRIDGE link in an XmlDocument

string OnSiteStorage::OnSiteStorage::PublishData (FileInfo[] dataItems, out

XmlDocument BRIDGELink) [inline, private]

Publishes the data.

Parameters:

dataItems The data items.

BRIDGELink The created bridge link.

Returns:

The ID of the published data

bool OnSiteStorage::OnSiteStorage::UnPublishData (string dataId) [inline,

private]

Removes published data.

Parameters:

dataId The data item identifier.

Returns:

TRUE if successful

FileInfo [] OnSiteStorage::OnSiteStorage::ListAllPublishedData () [inline,

private]

Lists all data published in the On-Site Storage.

Returns:

All currently published data items

