

Deliverable reference: Date: Responsible partner:

D04.2 20 December 2013 FIT
Bridging Resources and Agencies in Large-Scale Emergency Management

BRIDGE is a collaborative project co‐funded by the European Commission within
 the Seventh Framework Programme (FP7‐SEC‐2010‐1)

SEC‐2010.4.2‐1: Interoperability of data, systems, tools and equipment
Grant Agreement No.: 261817

Duration: 1 April 2011 – 31 March 2015

www.sec‐bridge.eu

Title:

Functional View on the BRIDGE Architecture

Editor(s): Approved by:
Andreas Zimmermann Dag Ausen

Classification:

Public
Abstract / Executive summary:

The BRIDGE middleware supports the flexible assembly of emergency response systems into a
‘system of systems’ for agile emergency response. To the producers and users of emergency
response systems, BRIDGE middleware offers a consolidated set of software services organized in
three layers that facilitate the assembly and orchestration of systems, the communication between
such systems, and the management of data produced by such systems during an incident’s life-cycle.
The BRIDGE middleware forms the basis of all BRIDGE Concept Cases and underpins
interoperability between different BRIDGE and external systems.
This deliverable reports on the final software architecture of the BRIDGE middleware at the end of
the second iteration. The methodology applied for the specification of the software architecture of
the BRIDGE middleware is based on the standard IEEE 1471 ‘Recommended Practice for
Architectural Description of Software-Intensive Systems’ which defines core elements like
viewpoint and view. In order to implement and execute this methodology, we follow the approach
introduced by Rozanski and Woods (2005).
The deliverable represents the current state of software design and has been continuously updated
and revised to incorporate the continuous improvements and integration of the BRIDGE
middleware. It provides updates for all relevant parts of the software architecture description, and
also, a testing of the software architecture based on the specification and implementation of the
BRIDGE Concept Cases. These concept case perspectives on the BRIDGE middleware architecture
help to explore the interplay and utilization of BRDIGE components to fulfil tasks related to
emergency response.

Document URL:
http://www.sec-bridge.eu/deliverables/...

ISBN number:
101010101010101

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 2 of 136

Table of Contents
Version History ... 4	

Contributing partners ... 5	

List of Figures .. 6	

Glossary and Terminology ... 9	

List of Abbreviations .. 11	

1	 Executive Summary ... 13	

2	 Introduction ... 14	

2.1	 THE BRIDGE PROJECT .. 14	

2.2	 CONTEXT AND SCOPE OF THIS DELIVERABLE .. 15	

3	 Methodology ... 17	

3.1	 SOFTWARE ARCHITECTURE AND DESIGN FUNDAMENTALS ... 17	

3.2	 SOFTWARE ARCHITECTURE DESIGN PROCESS ... 18	

3.3	 GENERAL DESIGN CONSIDERATIONS AND PRINCIPLES .. 20	

3.4	 ARCHITECTURE DEFINITION PROCESS ... 23	

3.5	 ARCHITECTURAL QUALITIES ... 24	

4	 Inventory Analysis ... 25	

4.1	 LINKSMART ... 25	

4.2	 CHAP .. 32	

4.3	 AGENTSCAPE ... 38	

4.4	 DYNAMIC EXPERTISE INTEGRATION NETWORK (DEIN) .. 42	

4.5	 WISE INTEGRATION TOOL .. 46	

4.6	 SUMMARY ... 51	

5	 BRIDGE System Architecture .. 53	

5.1	 THE MIDDLEWARE CONCEPT ... 53	

5.2	 STRUCTURAL OVERVIEW ... 55	

6	 The Functional View .. 58	

6.1	 ORCHESTRATION ... 58	

6.2	 DATA- AND MODEL MANAGEMENT ... 60	

6.3	 COMMUNICATION .. 65	

6.4	 SECURITY AND TRUST ... 68	

7	 Validation of the Architecture .. 71	

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 3 of 136

7.1	 ROBUST AND RESILIENT COMMUNICATION ... 71	

7.2	 ADAPTIVE LOGISTICS .. 80	

7.3	 FEDERATED CONTROL ROOM SUPPORT ... 85	

7.4	 ADVANCED SITUATION AWARENESS ... 88	

7.5	 DYNAMIC TAGGING OF THE ENVIRONMENT .. 92	

7.6	 INFORMATION INTELLIGENCE .. 100	

7.7	 SITUATION-AWARE RESOURCE MANAGEMENT ... 106	

7.8	 MASTER SYSTEM ... 108	

7.9	 FIRST RESPONDER INTEGRATED TRAINING SYSTEM .. 112	

8	 Architectural Qualities .. 115	

8.1	 ARCHITECTURAL QUALITIES LIST ... 115	

8.2	 TOWARDS BRIDGE ELSI DESIGN GUIDELINES .. 118	

8.3	 CONCLUSION ... 124	

References .. 125	

Appendix A – Initial Services ... 129	

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 4 of 136

Version History

Version1 Description Date Who

1 Initial TOC.

Initial description of methodology.

18.10.2011 Jahn

2 Services/requirements list, draft component
architecture model

22.11.2011 Ahlsen, Kool,
Persson, Brodén

3 Description of Requirements Engineering

First Functional Descriptions

First internal version to be sent to WP
leaders

12.12.2011 Ahlsen, Al-
Akkad, Jahn,
Zimmermann,
Eide, Skjetne

4 Updated BRIDGE Architecture from
Requirements Analysis

Draft of chapter ‘Functional View’
providing first description of services and
related requirements

26.03.2012 Jahn, Matiouk
Zimmermann,
Ahlsen, Kool

5 Architecture update, Methodology revision,
Inventory Analysis, Validation of the
archiecture with concept case perspectives,
Functional View update

24.05.2012 Jahn, Matiouk
Zimmermann,
concept case
owners

6 Update of the Architecture Diagram Jun & Aug
2013

Zimmermann,
Ahlsen, Kool

7 Contributing edits and chapter on
architectural qualities and BRIDGE ELSI
Design Guidelines

Sep & Nov
2013

Buscher, Liegl,
Wahlgren

8 Submission for internal review & internal
review

Dec 2013 Zimmermann,
Wenstad,
Wietek

9 Submission to the EC Dec 2013 Zimmermann

1 Note that the version number and description should correspond to the same information in the eRoom
version control, thus version numbers are integers. See below for more information.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 5 of 136

Contributing partners

Fraunhofer-Institut für
Angewandte
Informationstechnik FIT
Schloss Birlinghoven
53754 Sankt Augustin,
Germany

Andreas Zimmermann
andreas.zimmermann@fit.fraunhofer.de

Svetlana Matiouk
svetlana.matiouk@fit.fraunhofer.de

SINTEF
Strindveien 4
7034 Trondheim
Norway

Jan Skjetne, Jan.H.Skjetne@sintef.no

Aslak Wegner Eide, Aslak.Eide@sintef.no

CNet Svenska AB

Svärdvägen 3B
SE-182 33 Danderyd
Sweden

Matts Ahlsen, matts.ahlsen@cnet.se

Peeter Kool, peeter.kool@cnet.se

ULANC

mobilities.lab
Department of Sociology
Lancaster University
Lancaster,
LA1 4YD, UK

Monika Buscher, m.buscher@lancaster.ac.uk

Michael Liegl, m.liegl@lancaster.ac.uk

USTOCK

Swedish Law and Informatics
Research Institute, Faculty of
Law
Stockholm University
106 91 Stockholm, Sweden

Peter Wahlgren, Peter.Wahlgren@juridicum.su.se

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 6 of 136

List of Figures
FIGURE 1 – ‘NEXT GENERATION ICT FOR THE RESILIENT SOCIETY’ (ADAPTED FROM MAEDA 2010)........... 14	

FIGURE 2 – ARCHITECTURE DEFINITION ACTIVITIES (ROZANSKI, 2005) ... 18	

FIGURE 3 – DETAILS OF THE ARCHITECTURE DEFINITION ACTIVITIES (ROZANSKI, 2005) 19	

FIGURE 4 – VIEWPOINT CATALOGUE (ROZANSKI, 2005) ... 20	

FIGURE 5 – MIDDLEWARE DEVELOPMENT DRIVEN BY CONCEPT CASES ... 23	

FIGURE 6 – LINKSMART OVERLAY NETWORK .. 26	

FIGURE 7 – CLIENT-SERVER VS. PEER-TO-PEER .. 27	

FIGURE 8 – SOAP TUNNELLING EXAMPLE.. 28	

FIGURE 9 – SOAP TUNNEL ... 28	

FIGURE 10 – TYPICAL WIRELESS SENSOR NETWORK CONFIGURATION .. 30	

FIGURE 11 – CHAP VISION OF HYBRID HUMAN-COMPUTER PLATFORMS .. 33	

FIGURE 12 – CHAP CONCEPTUAL FRAMEWORK ... 34	

FIGURE 13 – COMPARTMENTS OF CHAP LIBRARY FOR AGENT-BASED ALGORITHMS 34	

FIGURE 14 – A FUNCTIONAL VIEW ON THE CHAP AGENT PLATFORM / MIDDLEWARE 36	

FIGURE 15 – MAPPINGS BETWEEN CHAP AND AN ICT MIDDLEWARE ARCHITECTURE 37	

FIGURE 16 – AGENTSCAPE PLATFORM .. 38	

FIGURE 17 – AGENTSCAPE LOOKUP SERVICE ... 39	

FIGURE 18 – FUNCTIONAL VIEW ON THE AGENTSCAPE ARCHITECTURE ... 40	

FIGURE 19 – INTERACTION BETWEEN AGENTS PROVIDING HETEROGENEOUS PROCESSING SERVICES 44	

FIGURE 20 – A GRAPHICAL USER INTERFACE SUPPORTS COMMUNICATION BETWEEN THE EXPERT AND HIS

(OR HER) DPIF AGENT .. 44	

FIGURE 21 – A SIMPLIFIED EXAMPLE FROM CRISIS MANAGEMENT ... 45	

FIGURE 22 – WISE CONNECTIVITY ... 48	

FIGURE 23 – LEARNING AND TRAINING METHODOLOGY .. 49	

FIGURE 24 – INFORMATION GATHERING AND HANDLING ... 50	

FIGURE 25 – USE OF EXISTING BASELINE TECHNOLOGY FOR THE BRIDGE MIDDLEWARE 51	

FIGURE 26 – MIDDLEWARE LAYER ... 54	

FIGURE 27 – GENERIC MIDDLEWARE STACK .. 54	

FIGURE 28 – STRUCTURAL OVERVIEW ON THE BRIDGE MIDDLEWARE SERVICES 55	

FIGURE 29 – VISUALISATION OF THE BRIDGE MESH TOPOLOGY ... 63	

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 7 of 136

FIGURE 30 – INFRASTRUCTURE DIAGRAM OF THE BRIDGE MESH ... 73	

FIGURE 31 – THE HELPBEACONS APP (LEFT) & FRONT OFFICER USING THE SEEKER DEVICE (RIGHT) 73	

FIGURE 32 – ROBUST & RESILIENT COMMUNICATION PERSPECTIVE .. 74	

FIGURE 33 – MESH USE CASE DIAGRAM ... 75	

FIGURE 34 – MESH DEVICE ACTIVITY DIAGRAM .. 76	

FIGURE 35 – MESH AND HELPBEACONS COMMUNICATION DIAGRAM .. 76	

FIGURE 36 – HELPBEACONS AND SOS MOBILE APP USE CASE DIAGRAM .. 77	

FIGURE 37 – HELPBEACON ACTIVITY DIAGRAM ... 78	

FIGURE 38 – SOS MOBILE APP ACTIVITY DIAGRAM .. 79	

FIGURE 39 – SIMPLE WORKFLOW ‘VICTIM EVACUATION’ .. 81	

FIGURE 40 – ADAPTIVE LOGISTICS PERSPECTIVE .. 82	

FIGURE 41 – ADAPTIVE LOGISTICS USE CASE DIAGRAM .. 83	

FIGURE 42 – ADAPTIVE LOGISTICS ACTIVITY DIAGRAM ... 84	

FIGURE 43 – ADAPTIVE LOGISTICS COMMUNICATION DIAGRAM .. 85	

FIGURE 44 – GEOGRAPHICAL VIEW OF BURN WOUND TEAM .. 86	

FIGURE 45 – PROCESS VIEW OF EVACUATION DECISION TEAM .. 87	

FIGURE 46 – FEDERATED CONTROL ROOMS SUPPORT PERSPECTIVE ... 88	

FIGURE 47 – UNMANNED AERIAL VEHICLE .. 89	

FIGURE 48 – GROUND CONTROL STATION .. 89	

FIGURE 49 – EXPERT SYSTEM ... 90	

FIGURE 50 – PLUME DISPERSION MODEL .. 90	

FIGURE 51 – ADVANCED SITUATION AWARENESS PERSPECTIVE .. 91	

FIGURE 51 – ADVANCED SITUATION AWARENESS USE CASE DIAGRAM ... 92	

FIGURE 52 – TAGGING THE ENVIRONMENT USING SYMBOLIC ICONS .. 93	

FIGURE 53 – LOOKING ‘THROUGH’ THE TAGGING DEVICE USING AUGMENTED REALITY MODE 94	

FIGURE 54 – USING THE TAGGING DEVICE AS A MAP VIEWER SHOWING IMPORTANT TAGGED PLACES 94	

FIGURE 55 – SENSOR TAG ... 95	

FIGURE 56 – A TRIAGE BRACELET .. 95	

FIGURE 57 – THE TRIAGE TABLET IN TWO MODES ... 96	

FIGURE 58 – DYNAMIC TAGGING OF THE ENVIRONMENT PERSPECTIVE .. 97	

FIGURE 59 – DYNAMIC TAGGING OF THE ENVIRONMENT AND ETRIAGE USE CASE DIAGRAM 98	

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 8 of 136

FIGURE 60 – DYNAMIC TAGGING OF THE ENVIRONMENT AND ETRIAGE ACTIVITY DIAGRAM 99	

FIGURE 61 – DYNAMIC TAGGING OF THE ENVIRONMENT AND ETRIAGE COMMUNICATION DIAGRAM 100	

FIGURE 62 – AGGREGATION COMPONENT GRAPHICAL USER INTERFACE ... 101	

FIGURE 63 – THE DATA SIMULATION COMPONENT ... 102	

FIGURE 64 – THE DATA COLLECTION COMPONENT .. 102	

FIGURE 65 – INFORMATION INTELLIGENCE PERSPECTIVE ... 103	

FIGURE 66 – INFORMATION INTELLIGENCE USE CASE DIAGRAM .. 104	

FIGURE 67 – INFORMATION INTELLIGENCE ACTIVITY DIAGRAM .. 105	

FIGURE 68 – INFORMATION INTELLIGENCE COMMUNICATION DIAGRAM .. 106	

FIGURE 69 – SITUATION-AWARE RESOURCE MANAGEMENT PERSPECTIVE .. 108	

FIGURE 70 – THE TABLET VERSION OF THE MASTER TABLE ... 109	

FIGURE 71 – THE MASTER TABLE SURFACE ... 109	

FIGURE 72 – THE LARGE SCREEN VERSION OF THE MASTER TABLE ... 110	

FIGURE 73 – MASTER SYSTEM PERSPECTIVE .. 110	

FIGURE 74 – MASTER USE CASE DIAGRAM ... 111	

FIGURE 75 – MASTER ACTIVITY DIAGRAM ... 111	

FIGURE 76 – MASTER COMMUNICATION DIAGRAM .. 112	

FIGURE 77 – FRITS TOOLS FOR EXERCISE ANALYSIS, PLANNING, EXECUTION, EVALUATION, LESSONS

LEARNED .. 113	

FIGURE 78 – LESSONS LEARNED REPOSITORY IN THE METRACKER .. 113	

FIGURE 79 – STAKEHOLDERS INVOLVED IN DESIGN-IN-USE .. 118	

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 9 of 136

Glossary and Terminology
This part aims at providing a comprehensive understanding of important terms that recur
throughout this and other documents. In addition, the terms listed here try to convey a sense of
their application and present the background of the fundamental concepts. Sources of these
terms comprise the succeeding chapters of this document, other deliverables of the BRIDGE
project or meeting minutes. Even if some of the subsections seem to be a repetition of things
already documented, this section can be seen as a central point of access to a description of the
BRIDGE terms for this deliverable.

System of Systems

A system of system exists when a group of independently operating systems—comprised of
people, technology, and organizations—are connected, enabling users to effectively support
their activities. Thus, it is a number of systems that interact to provide a set of coherent services
to end-users or other systems.

System

In the BRIDGE project the term ‘system’ is broadly perceived and covers technical systems,
software, devices, databases, etc., but also humans, teams, troops, etc. A system provides
support to an end-user or another system. A system may interact with or consist of other
systems, and, when analysed, it might turn out to be a system of systems.

Part (technical)

A (technical) part constitutes a piece of a technical system that is responsible for some of the
internal or external services provided by that technical system. A part can be either concerned
with the deployment (infrastructure technologies), user interface (interaction technologies), the
business logic (collaborative technologies), or system of systems glue (middleware
technologies).

Service

A service is a function that a person or system performs upon request. The service may require
that certain resources (data, money, goods, legitimation) are provided by the service-requester,
before the function can be performed. The term service can be used on a concept/abstract level
and on a technical/concrete level. The technical service descriptions refine the conceptual
descriptions. In the case of the BRIDGE middleware, a distinction was made between
conceptual middleware functions, and concrete middleware services.

Service Architecture

A service architecture is a system design where constituent components make use of each
other’s services, without concern for how those components internally implement the services.

BRIDGE Middleware

For software developers, the BRIDGE Middleware comprises a collection of interrelated
services that facilitate the implementation of end-user applications for first responding and crisis
management. The BRIDGE Middleware offers services for communication, orchestration, and
data and model management. The BRIDGE middleware represents a targeted integration of
services extracted from the baseline technologies AgentScape, CHAP, LinkSmart, and DEIN.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 10 of 136

The BRIDGE Middleware provides services to software applications beyond those available
from the operating system.

Middleware Function

A middleware function is a function that the BRIDGE middleware can perform, expressed at a
conceptual level where the middleware is treated as a black box. Each function will be
implemented with one or more concrete services provided by the BRIDGE middleware.

Infrastructure (Information System)

An information system infrastructure provides a coherent foundation to information systems and
consists of core telecommunications networks, databases, software, hardware, procedures and
guidelines. In the BRIDGE project, such basic facilities, services, and installations are needed
for the functioning of the BRIDGE concept cases and other future end-user applications. A
well-designed infrastructure supports responsive change and agility.

Interoperability

Interoperability constitutes the ability of systems, units or forces to provide services to and
accept services from other systems, units or forces and to use the services so exchanged to
enable them to operate effectively together. The BRIDGE project defines interoperability as the
ability of different organisations to conduct joint operations. It is understood as an effect of a
process. To be interoperable, human and non-human parties involved in emergency response
actively engage in an ongoing process of ensuring that the systems, procedures and
organisations are managed in such a way as to maximise opportunities for exchange and re-use
of information, whether internally or externally. Two systems are syntactically interoperable if
they are technically capable of data exchange and use of each other’s services – without regard
for the meaning of the data and services. Two systems are semantically interoperable if the use
of each other’s services and exchange data is not degraded by mismatches about the meaning of
data.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 11 of 136

List of Abbreviations
3G Third Generation (of mobile telecommunications technology)

6LoWPAN IPv6 over Low power Wireless Personal Area Network

AP Access Point

API Application Programming Interface

ASCII American Standard Code for Information Interchange

B.A.T.M.A.N Better Approach to Mobile Adhoc Networking

BP Bundle Protocol

BRI A requirement that has been elicited inside BRIDGE (e.g. BRI-128)

BSSID Basic Service Set Identifier

DOC Disasters Operations Center

DTN Delay/Disruption-tolerant Networking

EDXL Emergency Data Exchange Language

EMIS Emergency Management Information System

GPS Global Positioning System

GSM Global System for Mobile Communications

ICT Information and Communications Technology

IEEE Institute of Electrical and Electronics Engineers

IMEI International Mobile Equipment Identifier

IP Internet Protocol

LTE Long Term Evolution

MAC Medium Access Control

MD5 Message-Digest Algorithm 5

OLSR Optimized Link State Routing

OS Operating System

REST Representational State Transfer

RFC Request for Comments

S2D2S Secured Shared Distributed Data Space

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 12 of 136

SSID Service Set Identifier

TCP Transmission Control Protocol

TETRA Terrestrial Trunked Radio

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

UPnP Universal Plug and Play

Wi-Fi A wireless area network that is based on IEEE 802.11 standards

XML Extensible Markup Language

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 13 of 136

1 Executive Summary
The BRIDGE middleware supports the flexible assembly of emergency response systems into a
‘system of systems’ for agile emergency response. Such ‘systems’ include BRIDGE concept
cases, but also independent systems such as healthcare or vehicle registration records, building
or environmental sensors, CCTV camera systems. To the producers of emergency response
systems, BRIDGE middleware offers a consolidated set of software services organized in three
layers that facilitate the orchestration of systems, the communication between such systems, and
the management of data produced by such systems during an incident’s life-cycle. The BRIDGE
middleware forms the basis of all BRIDGE Concept Cases and underpins interoperability
between different BRIDGE- and external systems.

This deliverable reports on the final software architecture of the BRIDGE middleware. The
methodology applied for the specification of the software architecture of the BRIDGE
middleware is based on the standard IEEE 1471 ‘Recommended Practice for Architectural
Description of Software-Intensive Systems’ which defines core elements like viewpoint and
view. In order to implement and execute this methodology, we follow the approach introduced
by Rozanski and Woods (2005).

The functional view documents the system’s structure, demonstrating how the system will
perform required functions. Supportively, the information view (documented in deliverable
D4.3) visualizes modelling of data in order to illustrate and further specify the composition of
the middleware constituents and the communication among them. Also, the deployment view
(also available with deliverable D4.3) defines the physical environment in which the system is
intended to run, comprising different kinds of network nodes and devices, and the
communication between them.

This deliverable represents the current state of software developments and has been
continuously updated and revised to incorporate the continuous improvements and integration
of the software of the BRIDGE middleware. It provides updates for all relevant parts of the
software architecture description, and also, a test of the software architecture based on the
specification and implementation of the BRIDGE Concept Cases. These concept case
perspectives on the BRIDGE middleware architecture help to explore the interplay and
utilization of BRDIGE components to fulfil tasks related to emergency response.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 14 of 136

2 Introduction

2.1 The BRIDGE project
The BRIDGE project develops computer infrastructures and systems that can help responders
assemble ICT systems to support inter-organizational interoperability and information sharing.
This research is inspired by calls for greater interoperability and coordination between
emergency agencies (ENISA, 2012), best practice innovation that places an emphasis on data-
sharing (Knight 2013) and opportunities for convergence between ‘smart city’ and crisis
management systems, powerfully illustrated by Maeda et al’s vision of ‘Next Generation ICT
Services for the Resilient Society’ (2010, Figure 1) in Japan:

Figure 1 – ‘Next generation ICT for the resilient society’ (adapted from Maeda 2010)

Such computer architectures can enable ‘one stop management’ of datasets ranging from
personal activities (diaries, location, photographs, blogs) to employment, taxation and health
records, telecommunications and risk registers. Researchers, organizations and governments in
Brazil (Naphade et al, 2011), the Netherlands (Steenbruggen et al., 2013) and the UK (Johnson,
2012) are extending similar ‘one stop management’ to security and crisis management.

In the European context interconnections between legislative and executive agencies are
governed by strict rules, but secure information sharing that respects these rules (or is exempt
through exceptions) is seen as an important area for innovation. Coping with this challenge
means addressing aspects such as trust, security, and privacy of information, which are not in
the core research of the BRIDGE project as explicitly stated in the project description of work
(see section 1.1.2 of BRIDGE’s DoW). However, to address such issues anyway, we will base
our efforts in BRIDGE on the concepts and technology developed in the HYDRA project
(funded by the European Commission). The LinkSmart middleware for networked embedded
systems is available as open source, and it is deployable on both new and existing networks of
distributed, heterogeneous devices, both wired and wireless. By exploiting LinkSmart’s
technology for secure communication management, semantic context-based access control, trust
policy and authorization, virtual identities, and authentication, the BRIDGE consortium can
focus on its core objectives. Privacy-related aspects are tackled at full length in deliverable
D12.1 – Privacy Protection and Legal Risk Analysis.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 15 of 136

2.2 Context and Scope of this Deliverable
The functional view of a software architecture defines the architectural elements that deliver the
system’s functionality. This view documents the system’s functional structure that demonstrates
how the system will perform the functions required of it. Functionality and quality are
complementary properties of a system that is being designed. While functional requirements
describe the functionality of the system being designed (what the system should do), the non-
functional requirements describe the qualities of the system (how the system should operate).

This report details the services and components of the BRIDGE middleware as the core
architectural elements. It provides an overview on what purpose and main functionalities each
component serves, and documents what requirements they address. It also documents
architectural qualities to ensure that broader requirements are not forgotten in the design
process.

The functional view of the BRIDGE middleware architecture is based on the elicitation of a set
of requirements, which have been identified in the process of domain analyses performed in
work package 2 (WP2). Furthermore, the project partners introduced baseline technologies to
the BRIDGE project that provided an advanced springboard for innovation. This needs to be
tailored towards first responding, and therefore, it has an additional impact on the BRIDGE
middleware and its specification. Representing end-user applications, the BRIDGE concept
cases make intensive use of services offered by the BRIDGE middleware, which allows for a
test of the BRIDGE middleware architecture. D4.2 documents the abovementioned aspects and
is structured as follows:

Chapter 3 introduces the methodology applied in the BRIDGE architecture definition process. It
describes the relationship between requirements and architecture and how we implement the
IEEE 1471 standard (as proposed by Rozanski & Woods), defining the concepts of viewpoint
and views. Furthermore, it introduces the concept of architectural qualities, which serve as non-
functional requirements for the BRIDGE architecture.

Chapter 4 describes the baseline technologies brought into the BRIDGE project by individual
project partners. This top-down inventory analysis results in an overview of what functionality
provided by baseline technologies have been exploited to implement services of the BRIDGE
middleware. We applied a mixed top-down and bottom-up approach to find the right balance
between partners’ technologies brought into the project and BRIDGE requirements.

Chapter 5 provides a first structural overview of the BRIDGE architecture as it has been
developed according to the requirements and taking into account the technical requirements of
the different partners’ technologies provided by partners. It also introduces the middleware
concept applied for the BRIDGE middleware.

Chapter 6 provides detailed descriptions of the functional view on the BRIDGE middleware
architecture. It covers functional descriptions of all services/components and includes each
service’s purpose, internal functionality, and addressed requirements.

Chapter 7 sums up the test of the BRIDGE middleware architecture by mapping the Concept
Cases to the proposed architecture. Since each Concept Case makes use of services of the
middleware, each concept case provides a certain perspective on the BRIDGE middleware
architecture, providing hints to missing or needless services.

Chapter 8 puts architectural qualities in the loop of the design of the BRIDGE middleware
architecture and ensures proper consideration of broader requirements in the design process.
Architectural qualities represent non-functional requirements, and are therefore complementary
to the functionality provided by the BRIDGE middleware. The chapter develops a first set of

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 16 of 136

guidelines for the design of information systems for IT Supported Crisis Management. These
guidelines focus on ethical, legal and social issues large scale multi-agency emergency
response, but the considerations involved connect with broader ELSI design challenges in IT
Innovation. Hence, some more general design guidelines are also provided.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 17 of 136

3 Methodology

3.1 Software Architecture and Design Fundamentals
We have based our process on the standard IEEE 1471 ‘Recommended Practice for
Architectural Description of Software-Intensive Systems’ which defines core elements like
viewpoint and view. It also describes that stakeholders need to be involved and how to apply
stakeholders needs to the architecture. This will be supported by the introduction of architectural
qualities that describe the non-functional qualities of the software architecture.

3.1.1 Requirements and Architecture
We have established a process to gather requirements in a structured way as is laid out in
deliverable D2.1 – ‘Methodology, Infrastructure and Process for Requirements Engineering and
Domain Analysis.’

First, vision scenarios have been generated within the scope of T2.1 ‘Empirically Grounded
Scenario Thinking’. The creation of scenarios of end-user behaviour and interaction with
BRIDGE system functionality is an extremely useful instrument for identifying key
technological, security, socio-economic and business drivers for future end-user requirements.
The scenarios documented in deliverable D2.1 provide a vision framework for the subsequent
iterative requirements engineering phase.

The next step produces technically oriented scenarios from the project’s main vision focusing
on the deployment and use of the BRIDGE system (documented in deliverable D2.2). Such
technical context scenarios illustrate the benefits and functionality of a system for certain user
groups with their typical tasks and goals (see Dzida & Freitag, 1998). These technical scenarios
will be tentative, trying to capture the context of use for a certain user role and to illustrate how
the BRIDGE system might support them.

The analysis of these domain data mainly gathered in WP2 leads to the formulation of initial
requirements at different levels of detail and their aggregation in a structured way. The gathered
data, which may be in descriptive format, is categorized, classified, and finally transformed to
system requirements that display an immediate technical effect on the future BRIDGE system.

Resulting functional and non-functional requirements are formalized according to the Volere
scheme and tracked in a requirements database. This formalized process allows keeping track of
the requirements in the iterative system development process and to quickly adapt to changing
or upcoming requirements.

Requirements and architecture influence one another. Requirements are an input for the
architectural design process in that they frame the architectural problem and explicitly represent
the stakeholders’ needs and desires. On the other hand during the architecture design to the
BRIDGE partners will take into consideration what is possible and look at the requirements
from a risk/cost perspective.

3.1.2 Viewpoints & Views
The IEEE 1471 standard defines viewpoint and view as follows:

Definition: Viewpoint and View

A viewpoint is a collection of patterns, templates and conventions for constructing one
type of view. It defines the stakeholders whose concerns are reflected in the viewpoint,
and guidelines and principles and template models for constructing its views.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 18 of 136

A view is a representation of all or part of an architecture, from the perspective of one or
more concerns which are held by one or more of its stakeholders.

A viewpoint defines the aims, intended audience, and content of a class of views and defines the
concerns that views of this class will address e.g. Functional viewpoint or Deployment
Viewpoint.

A view conforms to a viewpoint and so communicates the resolution of a number of concerns
(and a resolution of a concern may be communicated in a number of views).

3.2 Software Architecture Design Process
Rozanski and Woods have based the architectural design process on the following definition:

Definition: Architectural Design Process

Architecture Definition is a process by which stakeholder needs and concerns are
captured, an architecture to meet these needs is designed, and the architecture is clearly
and unambiguously described via an architectural description. (Rozanski, 2005)

We have to consider a broad set of principles if the architectural design should be of good
quality. We need to engage stakeholders to collect their concerns so the requirements can be
balanced if there are conflicting or incompatible ones. The architectural design must allow for
effective communication between all stakeholders and it must be structured to ensure
continuous progress. Given the complexity of the project the design and also the process have to
be flexible so we can react quickly to changing requirements and environments.

3.2.1 Architecture Definition Activities
The foundation for our process is the IEEE 1471 standard and we have used the process
proposed by Rozanski and Woods, which is aligned to this standard:

Figure 2 – Architecture Definition Activities (Rozanski, 2005)

The process implemented in the BRIDGE project clearly reflects this approach. We started with
the initial scope and context and the involvement of stakeholders in the process of the scenario
development in WP2 and the subsequent requirements process. The stakeholders were included

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 19 of 136

to express their needs and desires and capture quality properties. Those requirements from the
discussion rounds together with requirements from other sources are the input for the current
architecture design phase where we create a first draft of the architectural description.

Based on this architectural description, the first prototype has been created, which can be seen
as a skeleton system with minimal functionality on top. The experiences gained from these
development efforts constitute a valuable source for the derivation of additional requirements
and the revision of already existing ones. The following diagram reflects the details of the
process:

Figure 3 – Details of the Architecture Definition Activities (Rozanski, 2005)

Steps 1 and 2 are reflected in the requirements process and steps 3 and 4 were basically defined
by the DOW. In the DOW we have decided to implement a middleware based on a service-
oriented architecture (SOA) through the use Web Services. With this as a framework the
candidate architecture was set so we would only chose another architectural style if we would
face insurmountable problems which are very unlikely.

The steps 5 to 7 (A and B) reflect our iterative approach on constantly refining the architecture
and checking back with the stakeholders if the architecture meets their needs. After this iteration
cycle the next steps of implementation and testing the revised architecture will follow but are
not scope of this document.

3.2.2 Viewpoint Catalogue
The viewpoint catalogue proposed by Rozanski and Woods contains the following viewpoints:

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 20 of 136

Functional: The system´s functional elements, their responsibilities and primary
interactions with other elements will be described. This is usually the most important
viewpoint as it reflects the quality properties of the system and influences the
maintainability, the extensibility and the performance of the system.

Information: Describes the way that information is stored, managed and distributed in the
architecture.

Concurrency: Describes the concurrency structure of the system and identifies
components that can be executed concurrently and how this is coordinated and controlled.

Development: Describes how the architecture supports the development process.

Deployment: Describes the environment that the system will be deployed into and also
documents the hardware requirements for the components and the mapping of the
components to the runtime environment that will execute them.

Operational: Describes how the system will be operated, administered and supported
while it is running and strategies and conflict resolutions will be documented here.

The following diagram shows how the viewpoints relate to each other.

Figure 4 – Viewpoint Catalogue (Rozanski, 2005)

During the course of the project this document will be continuously and successively extended
by additional views.

3.3 General Design Considerations and Principles
BRIDGE systems are spread over a large number of systems, devices and services that again
can spread over large spatial areas. For those highly distributed systems, some basic design
principles have to be considered. This section enumerates and describes an array of general
design considerations that form the character and affect the BRIDGE architecture. These issues
influence implicitly but also explicitly the software development process of the BRIDGE
middleware.

3.3.1 Distributed vs. Centralized Approach
Future BRIDGE systems combine several hard- and software components such as content,
applications, displays, etc. required for the delivery of multi-purpose services. Users of such

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 21 of 136

BRIDGE systems will share their content with other users either over a network or through
other storage media. The BRIDGE project aims at establishing interoperability between several
systems and devices of a single user, but also among users. In addition, BRIDGE focuses on
applications and services that will be deployed in environments, in which parts of the
application need to be distributed. The distribution occurs on two different levels: on a
conceptual level where information is distributed and on an implementation level where system
components are distributed. A management of distributed components occurs in a centralized or
decentralized manner.

A centralized approach is based upon a centralized component or server for several types of
information and services, which provide requested information to the applications running on
several systems and devices. This approach decouples the acquisition of information (content,
user-related information, context, system properties, etc.) from the processing of this
information. These applications can actively request the desired information from the server or
passively be notified about changes. The server collects all information from accordant
acquisition components and provides it to interested applications. A centralized approach suffers
from restricted scalability, in consequence of a maximum of applications that can be served by
the server. In addition, the problem of privacy rises, since all user-related information is bundled
and stored in one place.

Instead of maintaining all information and services in one centralized place, a de-centralized
approach holds the information at several places to avoid a potential bottleneck. Small devices
or nodes in a network maintain the information required by the application themselves and
process it directly. This approach requires the device to have the capability to store and process
all of the necessary data, which may not be efficiently achieved for a simple system or device
with restrictions concerning space, weight, or energy consumption. The decentralized approach
avoids the lacking scalability of the centralized approach and allows the user to control how
their personal information is published and thus, their privacy is guaranteed.

3.3.2 Coupling and Cohesion
Between the components of a software architecture, two important types of relations can be
identified, the inter-component coupling and the intra-component cohesion:

inter-component coupling refers to the width and complexity of the interfaces between
the components,

intra-component cohesion refers to the affinity or relatedness between the constituents
of one component

The components of a software architecture need to be designed in a way that minimizes inter-
component coupling, and maximize intra-component cohesion. The ‘ideal’ component does not
adhere to another component and does not collapse. This design principle is called ‘Structured
Design’ and has been published by Stevens, Myers, Constantine (1974).

A high coupling between the components causes an extensive and uncertain maintenance of the
system, since corrections and changes are distributed upon several units. A low coherence
between the constituents of one component demands the splitting up of this component, since
the resulting fragments offer a facilitated understanding and a better maintainability. Therefore,
both a low coupling and a high cohesion result in a high locality and for this reason a good
maintainability. The services BRIDGE middleware should be loosely-coupled among them and
show a strong cohesion among their internal constituents.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 22 of 136

3.3.3 Separation of Concerns
The design principle ‘Separation of Concerns’ constitutes a fundamental principle of software
engineering. For the design of the software architecture it is essential that each component is
only responsible for one very specific scope of functions. Components that cover multiple
functions and tasks at the same time are needlessly complex. In turn, this complexity
complicates the understanding, and therefore, the maintainability and the further development
also. In addition, the reuse of such components becomes limited.

3.3.4 Providing Redundancy
In distributed systems – independent of their degree of decentralization – a certain redundancy
of contents and services must be assured to safeguard robustness.

The BRIDGE middleware must guarantee robustness, independent of its degree of
centralization. In centralized systems, the client-server architecture may depend too much on the
reliability of the central components and the devices onto which they are deployed. Here, the
servers might not only be performance bottlenecks but also a weak point in terms of robustness.
A faulty server can cause a failure of the whole system.

If information is distributed over multiple systems and devices, the failure of a single
information serving system is not as crucial to the functionality of the whole system as in a
centralized system. Instead, the problem of finding and accessing information is relevant for the
robustness in a decentralized system: Client devices must know the device, which holds specific
information. Without a central server, this knowledge must be distributed over all devices as
well as the information itself. Redundancy of content and services increases the probability, that
clients find information in a distributed system.

An appropriate structuring of the BRIDGE system of systems through system architecture is
essential. As a partitioning scheme for software, such architecture separates concerns and directs
the distribution of the architecture constituents. This aspect is covered in deliverable D4.3 –
Information and Deployment View on the BRIDGE System Architecture.

3.3.5 Simplicity vs. Complexity
The paradigm of End-User Development (Fischer, 2002; Liebermann et al., 2006) aims at
empowering end-users to configure and compose the information technology according to their
diverse and changing needs. At the core of End-User Development research is the question how
to reduce the complexity the user is confronted with when adapting and configuring technology.
Therefore, Mørch (1997) introduced three levels of complexity that avoid big jumps in
complexity and address users at different stages of expertise and development skill. These levels
allow users to

 select between predefined behaviours,
 compose a desired application out of existing modules, and
 fully access the code base of an application.

This property of avoiding big jumps in complexity to attain a reasonable trade-off is called the
‘gentle slope of complexity’ (MacLean et al., 1990; Dertouzos, 1997; Wulf and Golombek,
2001; Beringer, 2004). Users have to be able to make small changes in a simple way, while
more complicated ones should only involve a proportional increase in the complexity the user is
confronted with. The software architecture of the BRIDGE middleware needs to achieve this
gentle slope of complexity through the increase of the flexibility of the underlying technology.
Object-oriented and component-based software paradigms allow for the introduction of different

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 23 of 136

levels of complexity that address several expertise levels of a variety of users according to their
specific roles.

3.4 Architecture Definition Process
The architecture definition started early in the lifecycle of the BRIDGE project. Project scope
and requirements were still blurry, since the design space for BRIDGE innovation was not fully
understood in the beginning. When the BRIDGE project started, the size and extent of the
BRIDGE middleware were not completely known, where the complexity is, what the most
significant risk are, or where conflicts among stakeholders will encounter.

For this reason, the architecture definition process tends to be a more fluid activity than later
tasks such as designing, building, and testing, and several iterations are necessary until the final
architecture specification is reached. The initial view of the system may differ substantially
from what is eventually built. Besides the iterative architecture definition, the specification of
the BRIDGE middleware was driven and approached in both a top-down and a bottom-up
manner (see Figure 5).

Figure 5 – Middleware Development driven by Concept Cases

As the top-down approach, an inventory analysis has been conducted based on the technologies,
platforms and middleware that the individual partners brought into the BRIDGE project (see
Chapter 4). These baseline technologies are:

 LinkSmart
 CHAP
 AgentScape
 DEIN
 WISE

These baseline technologies form the basis for the middleware development in the BRIDGE
project, since the goal is to integrate partner’s technologies to produce a middleware core
tailored to first responding. Therefore, this top-down approach revealed software components

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 24 of 136

and services that could be extracted from their original source and integrated with the BRIDGE
middleware.

As the bottom-up approach, several architecture definition workshops and requirements
engineering activities have been conducted. Functional and non-functional requirements have
been reviewed and taken into consideration during the architecture definition process. In the
functional descriptions in Chapter 6 each service is linked to the relevant requirements allowing
a validation of each service against the related requirements. Based on this requirements
analysis, an initial set of required services (see Appendix A) has been defined during the
architecture workshops.

A verification of the BRIDGE middleware architecture in terms of coverage of services has
been achieved by applying the concept cases. Each concept case represents an end-user
application whose implementation is based on individual parts and services of the BRIDGE
middleware, and therefore, each concept case represents an ‘instantiation’ of the BRIDGE
middleware architecture and provides a specific perspective on the services offered by the
BRIDGE middleware. For this reason, the set of concept cases as a whole allows an assessment
of the coverage of the BRIDGE middleware service with regard to end-user applications, and
therefore a verification of the respective architecture (see Chapter 7).

3.5 Architectural Qualities
Functionality and quality are complementary properties of a system that is being designed.
While Functional Requirements describe the functionality of the system being designed (what
the system should do), the Non-Functional Requirements describe the qualities of the system
(how the system should operate).

Architectural qualities (see Chapter 8) ensure that broader requirements are not forgotten in the
design process because the viewpoint and view approach per se does not explicitly consider
non-functional requirements. But attention to such requirements is critical to the success of
innovation and to reflect them properly one usually needs cross-view considerations.

For identification of relevant qualities standard ISOs have been considered:

ISO 22320: Societal security. Emergency management. Requirements for command and
control

ISO 9126::Information technology – Software product quality – Part 1: Quality model,
2001

Further, within the process of domain analysis a set of requirements related to ethical, legal and
social issues have been identified, and included in the list of architectural qualities. The
architectural qualities listed in Chapter 8 represent the current state of analysis of the emergency
management domain and need to be understood as guidelines that support IT developers in their
realisation of emergency management information systems. Architectural qualities also
represent non-functional requirements for emergency management information systems and
their respective architectures.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 25 of 136

4 Inventory Analysis
In this chapter we present the results of the inventory analysis. The goal of this analysis was to
identify the different technologies that partners bring into the project and to find out if and how
the BRIDGE system could benefit from these technologies. Therefore, for each technology, we
identified possible connection factors to the BRIDGE architecture.

In the following we provide for each technology a brief introduction and an analysis of their
applicability in BRIDGE.

4.1 LinkSmart
LinkSmart will mainly be used to setup the BRIDGE network, integrate different devices by
Proxies, provide discovery of these devices and managing them in a registry.

On the level of Central BRIDGE Middleware Services, LinkSmart already provides a working
Event Manager for Web Services.

From the security perspective, LinkSmart already implements Trust Management and a
Cryptography module for encrypting and decrypting messages.

Of course not all marked components can be used out of the box for BRIDGE. Some might need
to be extended and adapted to meet the specific BRIDGE requirements, while some might be
applied in BRIDGE with relative ease. In the following we provide descriptions of each service,
how it is implemented in LinkSmart and what needs to be considered when using it in BRIDGE.

4.1.1 Peer-to-Peer Networking
The LinkSmart P2P network is based on the P2P network from the baseline Hydra project and
uses the same model. The Network Manager is the component responsible of creating and
maintaining the P2P network. The main objective of the Network Manager is to interconnect
different devices and services through the network. The main problem of this task is that most
of the devices and services may be hidden in Local Area Networks, behind firewalls, routers
and Network Addressing Translators (NATs), so it would be difficult to interconnect directly.

However, the Network Manager solves this problem by building an overlay network,
independently of the network addressing and protocols. The Network Manager relies on JXTA
P2P platform in order to build the overlay network. JXTA is a set of open, generalised P2P
protocols enabling any connected device on the network to communicate and collaborate. Using
the JXTA protocols, devices and services are directly connected even if they are connected in
different networks separated by firewalls or NATs.

Figure 6 shows an example of how the different devices and services are interconnected in the
LinkSmart overlay network and how the actual network could look like. In order to make
services and devices available on the P2P network they need to register their services (i.e.
endpoints) with the network manager. The network creates a unique ID for the service, called
HID, which is then used for addressing the service.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 26 of 136

Figure 6 – LinkSmart Overlay Network

The HIDs are shared and synchronized among the network managers in the network. In effect
all network managers know which HIDs are available in the network. This table of HIDs is
referred to as the ID table, see the following table:

HID Endpoint Description Peer ID

223.122.33.33 http://127.0.0.1:8093/svc Thermometer 1

223.888.1.33 Thermometer 2

223.877.33.22 OntologyManager 2

The ID table contains the following data:

HID: That address that is used for the service

Endpoint: The actual endpoint of the service (in fact this field is not synchronised in-
between network managers, for security and performance reasons). So the endpoint is
only known to the Network Manager were the service registered. In the example above
only the services belonging to Peer ID=1 are known

Description: an optional field where a simple description of the service can be stored.

Peer ID: The ID of the network manager that manages the service.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 27 of 136

4.1.2 SOAP Tunnelling Approach for Device Communication and Service invocation
As the LinkSmart architecture is service-oriented, where web-services (WS) is the technology
used to implement it, the communication between applications running in different LinkSmart-
enabled devices will be based on SOAP messages. Usually, SOAP messages are forwarded
through TCP connections to the destination. The destination address corresponds to the endpoint
contained in the message.

Traditional WS architectures are based on client-server architectures, where the server is an
always-on end system with a well-known endpoint address, which should be known by clients
beforehand (using either service descriptors or UDDI registries). The SOAP tunnelling approach
proposes a way to replace this client-server architecture for a distributed one, using the Network
Manager P2P platform. In this architecture, all the peers will act as clients and servers at the
same time. Figure 7 shows an example of a client-server based architecture and the distributed
approach.

Furthermore, actual WS communications require direct connection between the client and the
server, making it impossible to consume services across networks.

Figure 7 – Client-Server vs. Peer-to-Peer

Moreover, in the LinkSmart middleware, devices are presented as UPnP devices by the Device
Manager. But UPnP discovery information is usually restricted to Local Area Networks. Using
the SOAP tunnelling the Device Manager is able to exchange the UPnP information between
different Discovery Managers in the Hydra Network. Thus other Device Managers will be able
to control UPnP devices located in remote networks using the SOAP technique presented in this
section.

Therefore the main objective of the SOAP tunnelling approach is to enable SOAP messages
exchange across different networks, making it possible to consume services provided by
different LinkSmart-enabled devices/applications or controlling UPnP devices located in
different Local Area Networks. Figure 8 shows an example of the application of SOAP
tunnelling. Thanks to the Network Manager and the SOAP tunnelling approach, HED2 is able to
discover UPnP devices located at home network (weigh scale and thermometer) and to consume
the web services offered by the application running on the HED1.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 28 of 136

Figure 8 – SOAP Tunnelling Example

4.1.3 SOAP Tunnelling
The LinkSmart Network Manager enables a way to communicate with different devices
transparently, building an overlay network in which resources (devices, services and contents)
can be addressed. The main objective of the SOAP tunnelling communication used is to
provide SOAP messages exchange using the P2P transport schemes provided by the Network
Manager. In order to use P2P networking/addressing/transport schemes together with web
services and UPnP we need some kind of virtualization of endpoints that allow us to use P2P
networking. For this reason, all endpoints for UPnP and web service calls are grounded in a
SOAP sink (ideally locally) which repackages the SOAP message and routes it through the
Network Manager, as shown in Figure 9. The Network Manager is responsible of the message
transmission and finally calls the SOAP sink that performs a local SOAP call to the intended
SOAP endpoint.

Figure 9 – SOAP Tunnel

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 29 of 136

The P2P networking with the SOAP tunnelling technique will facilitate event management, as
well as SOA in general.

4.1.4 Event Management

Eventing in a P2P-Based Network
In general, most event driven architectures include a couple of well-known building blocks –
event producer, event consumer, event processing agent, event channel, which together with a
global state represent an event processing network. From the communication point of view the
most important part is the implementation of the event processing network that connects event
producer, consumers and processing agents via event channels. In a decoupled event processing
network an event producer does not depend neither on an event processing agent nor on an
event consumer. In a similar way, an event consumer does not depend on an event processing
agent or on an even producer (with exception of the fact that the event was produced). The ways
how an event channel can be implemented include:

 an intermediary service or other piece of software (sometimes called a broker),
 a multicast protocol, such as IP Multicast,
 thrugh a Message Oriented Middleware (MOM), such as a Java Message Service (JMS)

provider, or,
 as part of a generic service oriented architecture (SOA) middleware, such as the

LinkSmart middleware.

The LinkSmart deployment environment will be highly flexible and dynamic, the dynamic
consumer registration (subscription) will be preferred – i.e. the publish/subscribe pattern. The
process of interaction between involved parties in publish/subscribe systems can be briefly
described as follows. Producers and consumers are independent entities that exchange
information by publishing events via event channels and by subscribing to the classes of events
they are interested in again via event channels. Publishers publish information in the form of
events and subscribers express their interests in an event or a pattern of events in the form of
subscription filters. A data event specifies values of a set of attributes associated with the event.
The subscriptions can be very expressive and specify complex filtering criteria by using a set of
predicates over event attributes. When an event channel receives an event published by a
publisher, it matches the event to the subscriptions and delivers the event to the matched
subscribers. A subscriber installs and removes a subscription from the channel by executing the
subscribing and unsubscribing operations respectively. The publish/subscribe systems can be
divided according to the following three criteria:

Expressive power of subscription models: topic-based, content-based and type-based.

Routing solution of the notification service: filter-based approaches and multicast-
based approaches.

System topology: centralized and distributed, whereby the distributed can be further
divided into broker-based and Distributed Hash Table (DHT)-based systems that belongs
to the structured peer-to-peer (P2P) systems.

For our purposes the most important type are content-based systems with application of filter-
based approaches, whereby distributed topology based on P2P network is used. To the
advantages of such solution belongs fine-grained expressiveness of subscription, improved
matching between subscriptions and events and more efficiently routing of the matched events
to the destinations. DHT-based publish/subscribe systems inherit advantages like scalability,
efficiency, reliability, fault-tolerance, self-organizing from the underlying DHT overlay network
infrastructure.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 30 of 136

Peer-to-Peer Eventing in LinkSmart
The initial LinkSmart event mechanism is based on a topic/content-based, publish-and-
subscribe architecture. The LinkSmart Event Manager is deployed as a service in close
cooperation with other components, among them the Network Manager, providing
publish/subscribe functionality, i.e., the ability for publishers to send a notification to multiple
subscribers while being decoupled from them (as described in the previous paragraph).

The architecture of LinkSmart has been characterized as event-driven SOA, integrating
intelligent services with advanced semantic event processing and business rules, and the
platform thus relies on the secure delivery of events. The basic event manager is being extended
in several ways in order to support reliable eventing. Among the extension are,

Delay tolerance. In the event of communication failures, the system must still prevent
loss of events. Store and forward functionality should be provided to guarantee delivery.
This will make use of the opportunistic networking features such as the delay tolerance.

Storage. Delay tolerance by means of store and forward implies that the event manager
must have storage available. Local caching will be combined with event databases
accessible by all networked nodes that process events. An event database will also be
used by the functions above the network layer, such as the business rule engine for
evaluating rules which may depend on previous events.

Time Synchronisation. Time is of essence when processing events, there is a need to
synchronise time in the distributed LinkSmart system architecture because the business
rules can express time dependence in the rules. Even though delay tolerance will
guarantee delivery of events, it does not guarantee the order of arrival. There is a need to
time stamp events in order to be able to order the events in the correct time sequence.
Since the network might bridge firewalls etc. it might not possible to use a NTP server for
this. Therefore the Network Manager part of the event management architecture should
be extended with functionality to synchronise time in-between the different nodes in the
LinkSmart network.

Stateful Event Processing and Persistency. The processing of an event may be
dependent upon one or several other events. It must be possible to maintain an event
history (log) and to have access to any results or side-effects of the events occurred. The
latter is supported by provision of persistent storage on the event processing nodes in the
architecture.

4.1.5 Wireless Sensor Networks and Peer-to-Peer
The aim for the integration of Wireless sensor networks (WSN) in the P2P platform is to make
all sensors addressable and usable in the P2P network of LinkSmart. This will enable the
application developer to use WSN devices as any other device on the P2P network.

 Figure 10 – Typical Wireless Sensor Network Configuration

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 31 of 136

Typically the interface to a WSN is done using a so called border router which acts as a bridge
in-between the normal network and the WSN and which knows of all the motes on the WSN.
Usually this border router is connected to a gateway, for instance a PC, which runs software that
interacts with the WSN, see Figure 10. The sensors themselves are usually attached to so-called
motes that provide the communication platform and limited computational power.

Integration of P2P technologies together with wireless sensor networks poses some unique
challenges:

 Routing in-between address spaces
 Often sensors report values at intervals instead for being queried interactively because

of energy (i.e. battery) constraints.
 Depending on the communication and network topology calls may take very long to

finish.
 The amount of memory and computational power in the nodes is very limited.
 Sensors which are mobile can move in-between different border routers.

There are basically two approaches that can be adopted for integrating the WSN in to the
LinkSmart network:

 Common address space: Since most WSNs today use IPv6 based protocols one could
make the actual sensor addresses available in the LinkSmart network using IPv6
addressing capabilities.

 Proxies: The use of proxy objects that embed the WSN functionality and act as an
interface in-between the LinkSmart network and the WSN.

Of these two options we believe that proxies are generally the best solution because of:

 The proxy can cache the latest received value. This will enable programs to poll the
value without requiring any WSN communication.

 The proxy can carry more metadata about the device, i.e. the amount of metadata is not
limited to devices memory.

 The proxies can have the services independent of the underlying WSN protocol. For
instance a ZigBee based thermometer can have the same services as a 6LowPAN
thermometer.

 Errors in the WSN network can be handled by the proxy itself.

One problem that this solution does not solve is managing the addressing of sensors that move
in-between different border routers, i.e. identifying that a mote that is discovered is the same
mote that was previously controlled by another border router. This identification needs to be
resolved at a higher level such as using the device ontology.

Wireless Sensor Networks are integrated using proxies in LinkSmart and the Contiki Operating
System platform running 6LowPAN, but the principles will be the same for other WSN
Operating systems such as TinyOS. In runtime the process of discovering devices and creating
proxies will follow these steps:

1 A Contiki discovery manager is started on the gateway.
2 The discovery manager queries the border router of available motes.
3 For each mote the discovery manager creates a “mote proxy”. The mote proxy queries

which capabilities the motes has (i.e. which sensors/actuators are attached). In the case
of Contiki this is just a set of identifiers.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 32 of 136

4 The mote proxy queries the device ontology using the capability information received
to determine which services (sensors/actuators) are connected to this mote.

5 The mote proxy creates the service proxies for these and offers the services to the
LinkSmart network.

Because we have proxies and connections to the device ontology for the proxy services the
LinkSmart system has all necessary metadata, such as unit of measurement etc. available
without needing it to be carried on the mote itself. This is of course a slightly simplified model
which leaves out the actual handling of sensor values and configuration of the motes in the
network. Configuration of motes usually involves setting the interval of measurements etc.

4.1.6 6LoWPAN Support
As far as Internet of Things is concerned, a multitude of heterogeneous smart objects, provided
with self-configuring capabilities, will be required to interoperate with each other. In this
context, the adoption of the Internet Protocol (IP) standard solution could play a key role. In
particular, the last available version of the IP protocol, i.e., IPv6 (IEEE 2009), presents
expanded addressing capabilities and specific improvements related to security, quality of
service, and packet forwarding. Consequently, IPv6 solutions are being increasingly adopted in
different low bandwidth wireless communication technologies, particularly suited for the actual
realization of the Internet of Things. More specifically, the Internet Engineering Task Force
(IETF) standard 6LoWPAN enables the adoption of IPv6 protocol in Low power Wireless
Personal Area Networks (LoWPANs) based on standard IEEE 802.15.4-2003

The 6LoWPAN format defines how IPv6 communication is carried in IEEE 802.15.4 frames
and specifies the adaptation layer’s key elements. 6LoWPAN has three primary elements:

Header compression: IPv6 header fields are compressed by assuming usage of common
values. Header fields are elided from a packet when the adaptation layer can derive them
from link-level information carried in the IEEE 802.15.4 frame or based on simple
assumptions of shared context;

Fragmentation: IPv6 packets are fragmented into multiple link-level frames to
accommodate the IPv6 minimum MTU requirement;

Layer-two forwarding: to support layer-two forwarding of IPv6 datagrams, the
adaptation layer can carry link-level addresses for the ends of an IP hop.

The key concept, on which adaptation layer is founded to reduce packet size, is to limit at just
few bytes adaptation, network and transport layer header fields. This is possible because we
observe that header fields often carry common values or that we can deduce them from shared
context. Another feature to compress the header fields is to elide redundant information across
protocol layers; for instance, IPv6 addresses are derived from lower-layer headers.

4.2 CHAP
This section describes CHAP, which is the Common Hybrid Agent Platform developed,
marketed and maintained by Almende for a wide range of Artificial Intelligence-related
applications. CHAP label is a general concept, which covers several aspects of an agent
development platform:

 a conceptual framework for multi-agent systems, based on a hybrid agent design pattern
LiNeMeMo (Links - Nets – Memo - Motor), inspired by the structure of a living
organism

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 33 of 136

 a software development kit for multi-agent systems, i.e. a set of APIs to create,
configure and communicate with an intelligent agent

 a library/repository of agent-based components (ranging from algorithms to full-fledged
multi-agent solutions for a specific problem)

 a collection of agent implementations, following an agent design pattern - LiNeMeMo
and using a middleware platform targeting at various multi-agent problems

What CHAP IS NOT:

 an agent hosting environment; instead, it can run locally, on specified servers or in the
cloud

 a standalone middleware platform, offering a pre-defined configuration for a software
execution platform, database access and storage, service bus, application and
presentation layer

 an agent communication language/protocol; CHAP does not define its own agent
communication protocol, but rather enables support for agent languages for which a
LanguageAdapter is present, through its Knowledge Representation module of MEMO
compartment.

In the following subsections we will describe what defines CHAP along these agent
development platform aspects.

4.2.1 CHAP: a Conceptual Framework for Multi-Agent Systems
CHAP can be seen as a conceptual framework for hybrid multi-agent systems. A hybrid multi-
agent system allows interaction with both human agents and software agents. As it is shown in
Figure 11, CHAP provides a platform that connects three types of networks: Social Networks
(networks of people), Agent Networks (networks of hybrid agents) and ICT Networks
(Networks of Information and Communication Technology devices).

Note that agents are software components/objects endowed with a set of attributes, including an
internal state, an execution mechanism and a set of functions/methods that can be invoked by
other agents or human users. A more detailed view of the Conceptual Framework which sits at
the basis of CHAP is shown in Figure 12.

Figure 11 – CHAP Vision of Hybrid Human-Computer Platforms

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 34 of 136

Figure 12 – CHAP Conceptual Framework

4.2.2 CHAP: Software Development Kit
CHAP can also be seen as a library of software components/functions that is packaged in a
standalone Software Development Kit (SDK). This kit can be used standalone or in combination
with other SDKs (such as Google Web Toolkit, which is used for Android-based smart phone
applications hosted in the Google cloud) and provides some useful agent-based functions:
visualization, scheduling, calendaring.

4.2.3 CHAP: a Library/Repository of Agent-based Algorithms

memo

links

nets

motor

System – real world interfaces

Dynamic data model
Learning/adaptivity

Distributed agent engine

Figure 13 – Compartments of CHAP Library for Agent-Based Algorithms

CHAP can also be seen as a library of agent-based algorithms. The library is organized in four
compartments, namely, Motor, Memo, Net and Links, as shown in Figure 13. These
compartments provide different capabilities/functions: sensing/moving, data storage, data

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 35 of 136

processing, data presentation. In the following subsections we describe these functional
compartments, which correspond to functional capabilities of a hybrid agent.

The Motor Compartment – Data acquisition from sensors, acting
Motor is a compartment of the general framework which is responsible for physical/system
resource management and administration (including data sensing/acquisition from sensors, and
providing an execution engine/motoric system).

Depending on the context in which agents are going to be used, there are several Motors
currently provided for a CHAP agent:

 EmbedOS - an agent execution platform for embedded systems; it allows a CHAP agent
to provide scheduling functions at OS-level;

 Abbey - a multi-agent-based thread allocation system; it provides thread management
(scheduling) at application level;

 CAL – an agent-based messaging dispatcher component and simple context
management system;

 GroovyActors – an agent-based system for concurrent programming

The Memo Compartment – Data Storage
Memo compartment of CHAP is used for data storage. Memo is a data storage function that
facilitates system interoperability at data level.

Example Knowledge Representation / Context components provided by CHAP:

 GAME1 – Generic Almende Model for Entities is a developed general data model for
data storage;

 GAME3 – this is an extension of GAME1 to cover event subscription and notifications,
time passage and history of agents, and agent interaction capabilities.

The Nets Compartment – Data Processing, Learning and Reconfiguration
Nets compartment is used for data processing functions, implementing business logic, i.e. the
intelligence of the agent. This provides a set of algorithms processing of data stored by the data
storage component, directs presentation of data to the user, or controls the motoric system. It
consists of various planning, scheduling, and learning algorithms for knowledge extraction,
machine learning, data mining, etc.

Example of developed components providing Nets functionality.

 ESN (Echo-State-Network) is for pattern recognition;

 ART and ARTMAP (Adaptive Resonance Theory) is a neural network-based
unsupervised learning system for object recognition

 KohonenNets (Self-Organizing Networks) is the implementation of Kohonen networks

The Links Compartment – System Interaction
Links compartment is responsible for the interaction between agents and humans or between
CHAP agents and other types of agents (e.g., AgentScape [] agents). It contains various
visualization functions/primitives implemented by modules such as Graph, Timeline and
Network; it also contains some user interaction interfaces for humans to provide inputs to the
multi-agent system.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 36 of 136

Examples:

 Eve – a modular Human Interaction Agent offering calendar-based task management,
distance calculations and time planning functions; supports communication via JSON-
RPC

 ASK/Paige – a personal agent providing decision support for emergency responders

 Visualization Primitives Library consists of several functions:
o GRAPH/GRAPH3D – Interactive Graph Visualization Functions
o NETWORK – Interactive Network Manipulation Function
o TIMELINE – Interactive Timeline Manipulation Function

4.2.4 CHAP as Agent Middleware Platform
CHAP is not a generic middleware platform, but can be viewed as an agent middleware
platform in a broad sense of the word: it provides several layers and exposes several standard
services/functions on these layers, which can be instantiated or invoked as out-of-the-box
components by other agents. See figure below for the mapping between the layers of a
middleware and the various instantiations of CHAP projects onto this middleware.

EVE

MOTOR
Concurrency

LINKS

Generic Visualization Primitives

NETSMEMO

System – real world interfaces

Dynamic data model Learning/adaptivity

Agent Engine

Graph Graph3D Network Timeline

ScratchOS

Embedded Systems OS

ART/
ARTMAP

ESN
GAME1/MEMO

Adaptive
Resonance
Theory Echo State

Network

KOHONEN
NET

Self-
Organization

ABBEYS

Groovy Actors
Thread Pool

Communicating
Agent Library

Agent Simulation

Concurrent Programming

Generic Almende
Model for Entities

ASK

Data Synchronization

Cloud Services

Google App Engine

Communication

Web Services

SENSE
IVO

CAL

Hadoop

CouchDB

Heuristics

Emerge

Figure 14 – A Functional View on the CHAP Agent Platform / Middleware

The relations between the CHAP layers and the typical layers of an ICT system architecture are
shown in the figure below.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 37 of 136

Application/Presentation Layer

Service/Integration Layer

Information Layer

Physical/System Layer

Links

Nets

Memo

Motor

Figure 15 – Mappings between CHAP and an ICT Middleware Architecture

Business/Presentation Layer
The upper layer of the CHAP agent middleware is the Business/Presentation Layer. A typical
function of the Presentation layer is to offer some pre-defined and composable Visualization
Services.

Service/Integration Layer
The Service/Integration layer of the CHAP agent middleware is the layer where business logic
of each particular implementation is defined.

Information Layer
The Information layer of the CHAP agent middleware is the layer where the information models
are defined, transformations of data and management of data, including handling of
communication protocols is done.

The generic data model used by the CHAP Agent Platform is shown below. It consists of a
Meta-Data Model which is used as the basis for implementing a graph-based associative
memory, and of a Domain-Independent Data Model, on which any domain can be mapped.
GAME3 supports Model-Driven Engineering and Development, through iterative model
transformations of models.

Technology/System Layer
The Technology/System layer of the CHAP platform is the layer where the motor of the agent
platform is defined. The motor is defined as any mechanism that implements an emulation of
state changes, e.g. task execution engine, rule production system, business process simulator,
chemical reaction simulation, database transaction system, distributed blackboard.

The main functional components of an agent engine in the technology layer are: Messaging, I/O
Resource Management, Workload Management - Task Scheduling and Concurrency.

Messaging. Messaging/Transport Services: Administration of network resources,
registration of messages, etc.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 38 of 136

I/O Resource Management. Resource Management includes administration of data
sources, data integration/mapping and data transformation.

Workload Management. Task Scheduling and Concurrency Services include:
Administration of thread pools, task management policies, dynamic prioritization and
coordination, etc.

4.3 AgentScape
AgentScape is a distributed multi-agent system. It can connect a (large) number of hosts
together, to deploy large-scale agent-based applications.

4.3.1 AgentScape Concepts
AgentScape defines the following concepts: Host, Locations & Worlds to structure the system
environment, as well as Services & Agents to perform application logic.

Hosts & Locations
An AgentScape platform contains hosts and locations. A location can consist of a number of
hosts. These hosts may be physically distributed, but they belong to a single administrative
domain (the location).

Each physical host runs an instance of the AgentScape platform with a Host Manager Service.
Optionally, some of the hosts can run a Location Manager Service, which performs the
coordination of all the available hosts in the location. This is illustrated in Figure 16.

Figure 16 – AgentScape Platform

On the left we see three different instances of the AgentScape platform. Each are running a host
manager, but one is also running a location manager. All hosts that are connected to this
location manager belong to the same location, so they are effectively part of the same location
(as shown on the right).

This distinction exists to separate administrative domains (locations) from the physical
machines (hosts) that are part of the domain. Policies can be applied per host or per location.

Each host in AgentScape can run various (application) services, as well as hosting agents.
Services are activated on start-up time, whereas agents can be started & stopped while the
system is running.

Worlds
In order for (distributed) hosts to find other hosts (and the location manager), AgentScape
defines the concept of a World. A world is defined by a World Lookup Service, where all
location and host managers are registered. Hosts can use this lookup service to find other hosts
and location managers.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 39 of 136

A lookup service may be a central node where all the addresses of the hosts are stored. It can
also be a distributed service, but there is no fully functional implementation provided with the
current release of AgentScape. The lookup service is a very simple process though, so it will be
easy to make alternative implementations.

There is a default world lookup service available at http://lookup2.agentscape.org, which can be
used by anyone. Each location that uses this lookup service runs in the “public” world. As a
result, hosts can see (and be seen by) all other hosts that use the same lookup service.

Figure 17 – AgentScape Lookup Service

It is also possible to define a separate world, by running your own lookup service. Hosts and
Locations can only contact others in their own world, so this allows for running isolated
experiments or a separate (non-) public world (see Figure 17).

Agents
Most applications on AgentScape will be built using the concept of agents. These agents are
pieces of code that can interact with the AgentScape platform and other agents in order to
achieve their (collective) goals.

Agents generally do not run as separate process, but are hosted by an AgentScape host. Each
host can provide various kinds of agent servers that act as application servers for agents.
Different implementation of agent servers exist (or can be made) for Java agents, native agents
or anything more.

Agents can be started on a specific location in the world, though the actual host the agent will be
running on is not visible to the agent. Where the agent is placed is automatically decided by the
location manager process; it depends on the requirements the agent has (which services it needs)
and which hosts are willing to accept this agent. The agent itself is not aware on which physical
host it is running, but it only knows on which location it is.

Agent Migration
If an agent decides that the current location is not meeting the demands of the agent (it may not
be offering all the services the agent needs), an agent can make a migration request at its

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 40 of 136

location manager – which is a request to be moved to another location. If the location manager
allows this, it will contact the location manager of the desired location and arrange a handover
(migration) of the agent to the new location.

The runtime platform that hosts the agents is responsible for managing the life-cycle of the
agent. If an agent needs to be migrated, it is suspended on the source location. The code and the
state of the agent are (cryptographically signed and) transported to the remote location, where a
suitable host is found to restart the agent.

Agent Services
Each host can offer services to agents. The agents can use the host service broker to find out
which services are available and can request a binding to the service. Services can be
application specific (made by the application developer) or general purpose (AgentScape
supplies directory, servlet and publish/subscribe services by default).

Each host defines a number of services that it will start, along with access rules. At the moment,
the only access rules for services are:

 Host only (service can be used by clients on this host)

 Location only (service can be used by clients on this location)

 World only (service can be used by any client in the entire world)

Because agents bind to a service using a secure connection, they can access services also when
these reside on a remote machine: even on a different location or a different world, if the service
allows it.

Services can not only be used by agents, but also by other services: if an application requires a
servlet services for publishing information via HTTP, it can do so.

4.3.2 AgentScape Services
AgentScape can provide a number of services through a combination of software-agents and
services. As a reference to the services discussion in the remainder of this section, an overview
of the current AgentScape Functional Architecture is provided:

Figure 18 – Functional View on the AgentScape Architecture

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 41 of 136

 Secure Communication
A connection-oriented encrypted communication mechanism between AgentScape
kernels offers secure communication sockets to the middleware. On the application
level agents are offered message-based communication on top of this infrastructure.

 Agent Container Management
Agents and their data are stored in agent containers. Containers support multiple code
and data segments, allowing for multiple instances of the same agent, and allowing the
agent to securely store private information.

 Secure Agent Migration
AgentScape supports secure migration of software-agents from one AgentScape
location to another, by means of Agent Container Transfer.

 Agent Runtime Environment
AgentScape provides a so-called ‘Agent Server’ that provides a runtime environment
for software-agents, enabling the agents to communicate with other agents and services,
and access other middleware functionality such as migration and container-access.

 Service Runtime Environment
In addition to agents, AgentScape also provides a ‘service’ runtime environment,
allowing developers to create applications consisting of both agents and services.
Compared to agents, services cannot migrate and have different security policies
associated to them.

 Host Management
AgentScape instances are managed internally by a Host Manager service, which
configures the middleware and ensures that the instance is registered within the
AgentScape location.

 Location Management
Within an AgentScape location, a Location Manager service configures the Host
Manager services. The LM is also the main contact point for other AgentScape
locations, for tasks such as agent migration.

 Lookup Service
The lookup service maintains low-level contact information on the AgentScape
middleware services, agents, and application level services.

 Blackboard service
AgentScape applications can use a BlackBoard service to publish and subscribe to
information in a shared space.

 Web Service Gateway
AgentScape provides managed access to external web services by means of providing
web service proxies that communicate via a gateway.

 Directory Service
Applications in AgentScape can use a Directory Service to store and retrieve key-value
based information, such as for example agent and service names, agent properties and
capabilities, etc.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 42 of 136

 Logging Service
Applications may use the application level logging service to log messages for later
analysis and debugging purposes.

 Secure Data Space
AgentScape provides several application level components (agent libraries and domain
manager agents) that work together to provide secure data storage and retrieval, based
on the BlackBoard infrastructure.

 Message Queue Service
The MQ Service offers applications a channel based communication method as an
alternative to the internal agent-agent communication mechanisms.

 External APIs
AgentScape offers APIs on all levels of the middleware to enable integration with other
frameworks:

o AOS Sockets: low level sockets that allow direct access to middleware services

o AgentScape admin API: Manage AgentScape configuration and applications.

o AgentScape API: Communicate with agents and services.

BRIDGE Services
For BRIDGE, there is one extra application service, which is the S2D2S service. This specific
service uses the AgentScape blackboard service for storing data items in topics (in a
publish/subscribe way). It also makes use of the AgentScape servlet service to provide access to
the service via HTTP(s).

The S2D2S service can be accessed from remote processes via JSON-RPC (it uses a specific
servlet that implements this). Processes in BRIDGE can use the JSON endpoint directly2.

Access to this service is also possible via LinkSmart. The machine that runs the S2D2S service
also runs a LinkSmart proxy which communicates with LinkSmart on one side (using web
services) and JSON-RPC on the other side.

4.4 Dynamic Expertise Integration Network (DEIN)
The Dynamic Expertise Integration Network (DEIN) is a generic framework, a suite of software
libraries and design methods that facilitate creation of solutions for situation assessment in a
relevant class of domains. A detailed description of the DEIN framework can be found in D07.2
– DEIN Requirement Specification and Semantic Expertise Structure. The main features of the
DEIN framework are:

 Easy implementation of information flows between distributed stakeholders (experts,
observers and decision makers) in complex crisis management, collaborative
situation assessment in coalition operations (maritime security, peacekeeping, etc.).

 The right people and automated processes get the right information at the right
moment in time.

2 http://bridge.d-cis.nl:8008/Name/S2D2S/jsonrpc

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 43 of 136

 Integrate arbitrary automated solutions if possible/acceptable, but keep the humans
in the loop wherever necessary.

 Exploit rich information without creating information flooding.

 DEIN introduces the OntoWizard, a tool that allows very easy installation and
configuration of DEIN-based solutions; users can configure the system themselves
(no need for technical knowledge).

 Use standard computing and communication infrastructure.

DEIN is relevant for large scale analysis problems involving many specialists and automated
processes with heterogeneous capabilities, each analysing specific aspects of the domain
(heterogeneous domain knowledge). In such settings assessments about critical events are
obtained through exchange of specific estimates/conclusions of the involved experts; in
principle, a DEIN-based system consisting of many experts and automated processes provides a
“mapping” between large quantities of heterogeneous information and conclusions about the
relevant states in the domain.

DEIN achieves collaborative information processing through weak coupling of very
heterogeneous analysis services belonging to different stakeholders, which are spatially
distributed and belong to different organizations. By explicitly taking into account the
capabilities and needs of experts or automated processes (i.e. provided services), a DEIN-based
system finds all relevant analysts and information sources for a given problem and maintains
complex and even dynamic information flows.

4.4.1 DEIN Wrapper Technology
DEIN makes use of the Dynamic Process Integration Framework (DPIF) wrapper technology
which (i) makes very heterogeneous services composable, (ii) supports reliable service
composition through service discovery and (iii) keeps track of information flow in complex
collaborative systems (Pavlin, Kamermans & Scafes, 2010).

In DEIN each local process (human or machine-based) is encapsulated by a module which is
implemented through a software agent (a DPIF agent). The agents provide a uniform interface
between different local processes involved in collaborative information processing workflows.
A key feature of the DPIF agents is asynchronous, data-driven processing in complex
workflows. This is achieved through a combination of weakly coupled processes. Each module
consists of at least two basic processes implemented through asynchronous threads
communicating via a local blackboard (see Figure 19).

The Communication Engine is a thread which provides inter-module communication,
collaboration and negotiation capabilities. Communication Engines in different agents establish
workflows between local processes in different agents by executing service discovery and
negotiation. Negotiation is based on the Contract Net Protocol, a task sharing protocol in multi
agent systems3. The Processing Engine, on the other hand, is a thread which encapsulates
arbitrary automated or human based inference.

3 http://en.wikipedia.org/wiki/Contract_Net_Protocol

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 44 of 136

Figure 19 – Interaction between agents providing heterogeneous processing services

Both agents use identical communication engine. However, agent 1 encapsulates automated
processing while agent 2 integrates human-based processing.

A human expert is integrated into a DPIF-based analysis system with the help of a dedicated
software agent, an assistant that (i) collects all information relevant for the expert, (ii)
disseminates the expert opinion/estimates and (iii) triggers the expert’s attention. Such an agent
continuously runs on an arbitrary server. Each expert communicates with the personal DPIF
assistant via a graphical user interface which can run on arbitrary networked computers and
PDAs (seeFigure 20). Thus, DPIF services are globally accessible.

Figure 20 – A Graphical User Interface supports communication between the expert and his (or
her) DPIF agent

In principle, arbitrary automated reasoning techniques can be integrated into the DPIF. An
example of a theoretically sound collaborative inference system based on the DPIF is the
Distributed Perception Networks framework (DPN), a modular approach to Bayesian inference
(Pavlin et al., 2010). DPN is a fully automated DPIF variant that supports exact decentralized
inference through sharing of partial inference results obtained by running inference processes on
local Bayesian networks in different collaborating DPN agents.

DPIF agents can autonomously form workflows in which heterogeneous processes support
collaborative analysis (see example in Figure 21). The DPIF implements advanced negotiation
mechanisms, which support automated creation of connections between experts and automated
processes by using multiple criteria and advanced protocols (Badica & Scafes, 2011).

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 45 of 136

Figure 21 – A simplified example from Crisis Management

This simplified Crisis Management example illustrates the information flow between different
collaborating experts and automated tools that are integrated via DPIF agents (blue rectangles).

4.4.2 The OntoWizard Tool
An integral element of DEIN is OntoWizard, a combination of tools, methods and procedures,
which supports tractable definition of services, which are indispensable for creation of
workflows. OntoWizard allows decentralized management of large scale processing
capabilities. The system automatically generates rigorous service ontologies encoded in OWL,
which are used by DEIN to establish collaboration. DEIN ontologies are used merely for service
discovery and creation of communication channels. Therefore, the DEIN is using types of
relatively simple service ontologies whose main purpose is to make analysis services easily
composable and to facilitate runtime collaboration between experts/processes:

 The global service ontology merely captures service descriptions, the semantics and
syntax of messages used for (i) service invocation and (ii) dissemination of service
results. This ontology is used for the alignment of the semantics and syntax of
service descriptions at design time.

 Local task ontologies coarsely describe relations between different types of services
supplying different types of information. In principle, they describe which types of
services provide inputs to the function used by a specific service. These relations
reflect the local knowledge of each processing module/expert. Local ontologies are
key to runtime creation of workflows based on service discovery.

The relations between services captured in local ontologies correspond to the local domain
knowledge of the experts or domain models of specialized automated processes; each expert

CA1

Chemical Adviser 2

CA1

Factory Rep.

CA1

COPI

CA1

ROT-decision
makers

ARGOS

CA1

Chemical Adviser 1

ARGOS

CA1

Measurement-team 1

CA1

BOTMI

CA1

Health Expert 1

CA1

DCMR Meldkamer

AR GOS

CA1

Field Inspector 1
CA1

Staff Member 1
CA1

Staff Member 2
CA1

Staff Member N

AR GOS

CA1

Measurement-team 2

CA1

Botmi expert N

CA1

Botmi expert 1

CA1

Field Inspector 2

ARGOS

CA1

ARGOS

ARGOS

CA1

GDM

CA1

Chemical Adviser 2

CA1

Factory Rep.

CA1

COPI

CA1

ROT-decision
makers

ARGOS

CA1

Chemical Adviser 1

ARGOS

CA1

Measurement-team 1

CA1

BOTMI

CA1

Health Expert 1

CA1

DCMR Meldkamer

AR GOS

CA1

Field Inspector 1
CA1

Staff Member 1
CA1

Staff Member 2
CA1

Staff Member N

AR GOS

CA1

Measurement-team 2

CA1

Botmi expert N

CA1

Botmi expert 1

CA1

Field Inspector 2

CA1CA1

Chemical Adviser 2

CA1CA1

Factory Rep.

CA1CA1

COPI

CA1CA1

ROT-decision
makers

ARGOSARGOS

CA1CA1

Chemical Adviser 1

ARGOSARGOS

CA1CA1

Measurement-team 1

CA1

BOTMI
CA1CA1

BOTMI

CA1

Health Expert 1
CA1CA1

Health Expert 1

CA1

DCMR Meldkamer

AR GOS

CA1CA1

DCMR Meldkamer

AR GOSAR GOS

CA1CA1

Field Inspector 1
CA1CA1

Staff Member 1
CA1CA1

Staff Member 2
CA1CA1

Staff Member N

AR GOSAR GOS

CA1CA1

Measurement-team 2

CA1

Botmi expert N
CA1CA1

Botmi expert N

CA1

Botmi expert 1
CA1CA1

Botmi expert 1

CA1

Field Inspector 2
CA1CA1

Field Inspector 2

ARGOS

CA1

ARGOS

ARGOSARGOS

CA1CA1

ARGOS

ARGOS

CA1

GDM

ARGOSARGOS

CA1CA1

GDM

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 46 of 136

knows which services are needed in order to provide a certain service. This assumption is
realistic in a significant class of applications and allows tractable solutions with minimal
ontological commitments. Thus, by using OntoWizard tool, each expert can describe relations
between the provided and the needed services. Such a description is translated into the local
ontology that is used by the corresponding DPIF assistant for integrating the expert/process into
a workflow. Because of this, systems exploiting complex relations between services can be built
in a collaborative way, without any centralized configuration/administration authority.

The knowledge in DEIN is captured in local ontologies. Each DEIN agent has a local ontology
which captures (i) the types of services that the expert provides and (ii) the required information
for each type of services.

Each type of knowledge is specified through a combination of three elements:

1. a verbal description and keywords
2. a description of the service invocation request
3. a description of the service outputs.

Points (2) and (3) are based on a set of objects that represent atomic information types with
clearly defined semantics and format.

4.5 WISE Integration Tool
The WISE Integration tool is part of the WISE Family and is a generic platform designed to
provide training in any domain ranging from live training via virtual to constructive training.
The WISE Family comprises of three major parts:

 Customer Solutions
 WISE Training Platform
 WISE Connectivity

For the FRITS concept, only WISE Connectivity (illustrated by the red box in the hub figure
below) is used for integration.
Today's work becomes more and more complex. The world is changing ever faster, and a
workplace can be located to any environment, in different continents and countries and at

different times. The amount of unforeseen circumstances that affect how a user can act and what
decisions a user takes increases, which requires that the training system is changed at the same
rate.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 47 of 136

When talking about training the focus should be on what the expectations are set in an
organization and its ability to live up to those expectations. Often the focus is on what
technology is behind in order to realize a training system rather than what the training process
actually demands of the organization.

In order to train the same way as you work, our tools supports a scenario-based training process.
This process is based on what you have to achieve and what kinds of problems you are expected
to solve to deal with an incident or an assignment in a given time. We believe that this technique
provides better overall training value.

Our training services are based on the customer always be able to adapt to changing
expectations, new training tools and new procedures and instructions in the organization's
defined training goals.

MeTracker will handle these requirements, and be part of the integrated solution.

Learning Cycle Exercise Management
Before you can start training, you have to define your training needs and the goals to be
achieved during training. This definition should be done by experts in the field of training and
be based on good practice and experience from previous exercises similar to the current exercise
as planned.

Review of relevant procedures must also be maintained so that the trainees as individuals and as
a group understand the expectations of those goals. All these preparations are being made in the
MeTracker tool as seen below. Here you can create a baseline scenario description, and the
training goals of the scenario.

Run-time Exercise and Evaluation Management
During an exercise it is possible to monitor the events taking place and see how the trainees act
and react to these events. In the exercise, observations are made both by those who manage the
exercise and by those acting in the exercise. These observations are added to the evaluation and
are built dynamically during the exercise and can also be created after the exercise.

Evaluation of the trainees’ development can be continuously monitored in order to constantly
keep track of whether the stated training goals are met or not. This helps to not be extradited to
make this evaluation only after the exercise ended. Exchange of information between the
trainees and the exercise management is important in the learning process.

Aggregated and individual evaluation is done to enhance the learning process. Both the scenario
objectives fulfilled and those that are missed can be exemplified and discussed with the trained.
At this point, the experts who helped to create scenarios play a major role. It is possible to
export data for either the entire exercise or for individual achievement that can be handed to the
trainees to take part of the evaluation at home after the end of exercise

AKKA will handle this requirements, and be part of the integration

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 48 of 136

4.5.1 WISE Connectivity

Figure 22 – WISE Connectivity

In order for an integration between two or more training system to be successful, the training
value generated by the integration has to be greater than the value of each training system. In the
world we live in the training requirements changes from day to day and time you have to
integrate these requirements into existing or new systems decreases gradually.

The solution to this problem is to emphasize integration methodology to a higher level and
move towards an approach where training systems need not be modified to meet the new
requirements. This we realize with a generic platform for integration that allows connecting the
systems to a common environment where we create information flows to and from every system
that we choose to connect. This happens regardless of any architecture systems use and
regardless of the communication standard used.

The information flows that are set can be checked in detail, allowing features such as filtering,
blocking and transformation.

4.5.2 BRIDGE Training Design
A main area of interest will be to develop a training system that integrates a defined learning
methodology, the technologies supporting information gathering and handling during the
training and existing operational systems into one common training environment. The main
purpose of this training system will be to support the improvement of the quality of emergency
response and crisis management with particularly focus on collaboration and coordination
between different organizations from different disciplines and countries. Training is normally
divided in Live-, Virtual and Constructive (LVC) Training:

 Live Training is real-time live exercises with use of instrumentation to collect adequate
information needed to support an extensive evaluation process.

 In a Virtual Training environment, simulators operating on a virtual terrain take the
place of operational systems and can be linked to expand the training exercise. Virtual
Simulations, which are synthetic environments that include the replication of
operational equipment/ and operational environmental conditions; allows for the sharing
of a common environment which multiple users can access; and supports interactions
with simulated entities (including objects, avatars, and equipment) that mirror, those
that would occur in the real world.

 Constructive Training uses real human inputs and/or computers to simulate different
operational elements. This enables multiple echelons of command and staff to execute
their normal operational tasks in an unconstrained exercise environment. Semi-
automated Forces/ Organizations are one example of constructive simulations; Gaming
models are another example.

By combining the different training methods above, one enable organizations to interact with
one another to conduct a coordinated operation as though they were physically together on the
same ground. The above description is based on ‘Definition of LVC’ from ‘The Office of Naval
Research’ with ref ONR BAA Announcement #11-005.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 49 of 136

The BRIDGE Training System (FRITS) will be based on the already established learning and
training methodology from CTAS, supported by information- gathering and assembling
technology from CTAS and SAAB Training Systems. The system shall be a module that is used
for planning, executing and evaluating scenario- and collaboration-oriented training activities.
This is referred to as experienced-based training.

The training system will also be used to document a number of the activities done in the domain
analysis.

Learning and Training Methodology
The learning and training methodology of CTAS is divided into five main activities, each with a
number of sub-activities as shown in Figure 23.

Figure 23 – Learning and Training Methodology

Analyse Phase: The main objective for this phase is to define training objectives based
on the actors, existing emergency plans, and experiences from earlier training sessions
and real operations. Another important activity in the Analyse phase is to establish and
acknowledge the process for the evaluation of the training activities, and assure that the
experiences are integrated in the participating organisations.

Planning Phase: Based on the training objectives, the scenario will be defined and
further detailed into a storyboard and an execution plan. The next step will be to secure
and define the required resources (personnel and materiel) to execute the exercise. The
final activity in the planning phase is to assure the right competence both for the training
facilitators/evaluators as well as the trained personnel.

Execution phase: Based on the defined scenario, the training environment will be
established and the exercise executed. The exercise could be Live, Virtual or Constructive
or a combination of these. During the exercise, well trained observers will assure that
important observations are documented and learning processes are managed.

Evaluation phase: Based on received information from different sources, the evaluation
team will analyse and compile the information related to the defined objectives. Finally

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 50 of 136

the evaluation process will be prepared and executed based on well-established learning
processes.

Lessons learned: The objective of this phase is to assure that relevant experience from
the exercise will be transferred to relevant organisations and that emergency plans/other
directives are reviewed and updated if needed.

Information Gathering and Handling
To properly design, support, and evaluate training operations, real data from past operations and
analyses of weak spots in those operations will be used as input to the training system. This data
may also be used to design and produce relevant and realistic training scenarios. Furthermore,
real data from past operations could also be used to benchmark training results against real
operations metrics and performance indicators. Different variants of training approaches can be
compared with each other in terms of effectiveness. Finally, an important step is to translate the
training experience and results back to guidelines, workflow configurations, that can be used to
prepare, brief and support emergency response operations in real-time.

To optimize the evaluation, the information gathering and the handling of all this information is
extensive. To support this activity, an information-gathering and handling system must be
further developed. SAAB Training Systems existing AKKA system will be the baseline for
further development of such a system.

Figure 24 – Information Gathering and Handling

The Exercise Management function includes the analysis and planning phases as described
earlier. It also includes the Strategic function of the exercise control during the exercise.

The Exercise Lead function includes the Local Management placed close to the training
environment. It also includes the special developed on site supporting tools that collects the
relevant information from the training environment and the participants.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 51 of 136

The Central Storage function obtains the information from the Exercise Management and the
Exercise Lead function. The Central Storage function also obtains information from relevant
operational systems in use by the participants. All this information is then handled to assure
relevant evaluation information for use during the evaluation and Lessons Learned phase.

The objective in BRIDGE is to continue to develop and optimize this integrated training
environment to optimize exercises with the aim to find and improve the operation of intra- and
interagency as well as cross border crisis. Also, using training as a research tool will help the
project search for optimal solutions applied to a real operational context.

4.6 Summary
Taking the structural overview on the BRIDGE middleware architecture into account, Figure 25
provides a graphical overview of the components that are (partly) addressed by partners’
technologies or will be developed within the scope of the respective technology.

Figure 25 – Use of existing Baseline Technology for the BRIDGE Middleware

AgentScape services have been extended to implement orchestration services such as
Triggering&Eventing and Workflow Management. Also, the platform provided the core
Publish&Subscribe Service together with the Shared Dataspace. In addition, the BRIDGE
middleware exploits the AgentScape implementation of security and trust mechanisms.

CHAP as an agent-based platform provides functionality for dealing with information and
resources. It will be mainly applied to the services that deal with resource and information
management.

LinkSmart middleware already provides networking and discovery functionality and
implementation of encrypted and trusted communication. A Media Streaming Service and
Network Information Service will be developed as LinkSmart components.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 52 of 136

DEIN will basically contribute its messaging approach to the Messaging Service, which is
integrated with the accordant CHAP implementation.

The main goal of WISE is not to provide middleware service but to serve as a flexible
interface to the BRIDGE training Concept FRITS. However, the existing Transformation
functionality has been exploited and integrated with the BRIDGE middleware.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 53 of 136

5 BRIDGE System Architecture
This chapter describes the software architecture of the BRIDGE middleware on a general level
before going into detail using the views and perspective approach described earlier.

5.1 The Middleware Concept
The concept of ‘middleware’ in distributed systems is often taken to mean ‘the software layer
that lies between the operating system and the applications on each site of the system’
(Krakowiak, 2003). Another characterization in terms of the ISO OSI stack (Day and
Zimmerman, 1983) is that middleware provides protocols that run on top of the transport layer
and that provides services to the application layer (Tanenbaum and Van Steen, 2007, p. 123) as
shown in Figure 26.

In a casual way, a middleware represents the intersection of the things that network engineers do
not want to do with the things that application developers do not want to do. The decision in the
BRIDGE project to build a middleware for developers of emergency response information
technology funds on four major arguments:

A middleware is mostly invisible. The developer does not really see middleware, but
the web services it provides and the information flow that middleware makes possible.
Developers are aware of software packages at the top level in a logical view, such as a
web application, and packages that exist at the bottom level, such as databases and the
operating system. The middle part, that ties everything together, can seem less concrete
and identifiable. This is part of why middleware is hard to define.

A middleware provides a standard way of doing things. A software developer could
design and build his own application servers, database connection drivers,
authentication handlers, messaging systems, etc. However, these would not be easy to
build and maintain. It is much easier to make use of middleware components that are
built according to established and especially open standards. In a middleware, these
standards take the form of libraries of functions that the developer’s call through well-
defined application programming interfaces (APIs).

A middleware ties together parts of complex systems. Middleware keeps information
moving through complex applications. One of its primary tasks is to connect systems,
applications, and databases together in a secure and reliable way. A middleware enables
software developers to tie together systems that were built by different people, at
different times, without having to reconstruct everything from scratch. One of the most
powerful approaches is a service-oriented architecture that allows for the integration of
software applications developed at different times, by different organizations, and even
communicating via different protocols. Developers do not have to rewrite them to speak
one consistent language.

A middleware lets developers focus on other things. With middleware taking care of
all the invisible functions, a software developer can concentrate on building software to
solve your business problems and fulfil your customers’ needs. A middleware may be
mostly invisible, but it keeps things running so a lot of developers, managers and
customers can rely on it.

The need for middleware for the BRIDGE project stems from the increasing growth in the
number of applications and information technology in the area of emergency response, and in
the customizations within those applications. A BRIDGE middleware needs to move a set of
core services and data from their multiple instances across several different applications into a
centralized institutional offering. This central provision of service eases application

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 54 of 136

development, increases robustness, assists data management, and provides overall operating
efficiencies. Furthermore, the BRIDGE middleware needs to provide transparency in various
ways such as location transparency, access transparency, or failure transparency (ISO, 1995).

Figure 26 – Middleware Layer

Schmidt (2002) elaborated a more detailed insight into the middleware layer and divided into
the layers Host Infrastructure Middleware, Distribution Middleware, Common Middleware
Services and Domain-Specific Middleware as shown in Figure 27.

Figure 27 – Generic Middleware Stack

The Host infrastructure Middleware encapsulates and enhances native operation systems, and
abstracts from sockets and provides higher-level abstractions (such as active objects), e.g., a
virtual machine such as the Java Virtual Machine. The Distribution Middleware defines higher-
level distributed programming models like for example CORBA or Web Services. The
Common Middleware Services constitute higher-level domain-independent components for
tasks such as event notification or logging. The Domain-Specific Middleware is tailored to
specific system domain such as avionics or radar processing and manages issues like navigation
management. Figure 27 also displays the areas of the generic middleware stack that the
BRIDGE middleware covers.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 55 of 136

5.2 Structural Overview
The software architecture here described is an abstract representation of the software part of the
BRIDGE middleware. The architecture is a partitioning scheme, describing components and
their interaction with each other. Figure 28 gives a structural overview of the BRIDGE
middleware and explains how the elements are logically grouped together. ‘BRIDGE Services’
constitute the major building blocks that make up the BRIDGE middleware. A BRIDGE Service
encapsulates a set of operations and data that realise a specific functionality (see Chapter 6).

The architecture provides a component-based view of the overall architecture in which service
subsets (groups of functionally related services) are mapped (allocated) to components as
building blocks. One objective is to provide a component-based context for the set of BRIDGE
services, allowing us to structure them into a number of functional blocks, to support the
BRIDGE functionality in a Service-Oriented Architecture environment. The generic
components will eventually derive (be mapped to) sets of software components. Another
purpose is to make explicit a separation between what can be considered as functionality of a
BRIDGE middleware and the (open ended) set of different applications that will be deployed for
use based on the BRIDGE middleware and its infrastructure.

The BRIDGE middleware services are enclosed by the physical communication layer at the
bottom and the application layer at the top of the diagram respectively. The physical layer
realizes several network connection technologies like ZigBee, Bluetooth or WLAN. The
application layer contains user applications which could comprise modules like workflow
management, user interface, custom logic and configuration details. These two layers are not
part of the BRIDGE middleware.

Figure 28 – Structural Overview on the BRIDGE Middleware Services

The BRIDGE middleware offers a large collection of reusable core software components to
experienced developers. Based on these software components, programming abstractions allow
for programming with well-known concepts from the field of emergency management through
reducing the details of the underlying implementation. The BRIDGE middleware services
provide programming abstraction and functionality for developers. The middleware services are
logically clustered in four groups of services:

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 56 of 136

 Orchestration
 Communication
 Data- and Model Management
 Security & Trust

The Middleware Services represent globally available functionality shared by all BRIDGE
applications, and possibly external systems/actors. The internal structure of each component is
determined by a design derived from the related set of requirements and hence determined by
specific project work packages. Chapter 6 provides a more detailed view on the above
enumerated BRIDGE middleware services from a functional perspective. The following
subsections provide an overview on the purpose of the middleware services.

5.2.1 Orchestration
Orchestration services provide support for the composition of services and workflows. The main
services are:

Transformation: Provides generic format and structure transformation services.

Triggers & Eventing: An event management subsystem, providing event channels, event
taxonomies (types), and event log and history (based on extended LinkSmart).

Workflow Management: Definition, storage and sequencing of activities and tasks
(possibly based on standard workflow models). Supports the sharing and re-use of
workflow plans.

5.2.2 Data- and Model Management
Data- and Model Management services support the acquisition, storage and exchange of data,
services and models emerging from diverse sources (sensors, systems, databases, public,
experts, colleagues, etc.) on the fly. The main services are:

Tagging: Provides functions needed for the annotation of any identifiable BRIDGE
object (first responders, victims, buildings, data). This includes tagging with various
sensor devices.

Identification: Supports the unique identification of BRIDGE resource (actors, tasks,
devices, etc.). Provides functionality to register and query resources.

Service Catalogue: Provides access to BRIDGE middleware services as an entry point.

Network Information: Provides information about the infrastructure
objects/topologies/resources.

Shared Dataspace: Provides a persistent data space for sharing and distribution among
multiple clients.

On-Site Storage: Provides access to large-sized data without going over the Internet and
thus, with shorter response times.

5.2.3 Communication
Communication services provide functionality enabling distribution of data as well as
invocations of services. The main services are:

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 57 of 136

Messaging: Allows sending messages to actors based on their role, location, etc. Also
support for broadcast messages to a certain group of receivers (e.g. all fire-fighters in an
area).

Media Streaming: Provides service for streaming media over the network.

Publish & Subscribe: implements a message-oriented communication paradigm to
provide greater network scalability and more dynamic network topology

Network Management: provides functionality to change networks topology

5.2.4 Security and Trust
Aspects of security and trust do not represent a focal point of research in the BRIDGE project as
explicitly stated in the project description of work (see section 1.1.2 of BRIDGE’s DoW).
However, the BRIDGE project addresses these aspects by exploiting the LinkSmart concepts
and technology developed in the HYDRA project (funded by the European Commission). All
aspects related to privacy are fully described in deliverable D12.1 – Privacy Protection and
Legal Risk Analysis.

The BRIDGE middleware provides security, trust and privacy as a combination of guidelines,
models, and supporting technologies including standards for Privacy Level Agreements, Trust
and Cryptography.

Privacy: is handled by design. Message-related services provide functionality for hiding
the identity of the sender, hiding the contents of a message or hiding the recipient of a
message.

Trust: implements an assessment of the trustworthiness of an entity according to a given
trust model.

Cryptography: provides standard cryptographic operations for protecting confidentiality,
integrity and authenticity of messages.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 58 of 136

6 The Functional View
The functional view of a software architecture defines the architectural elements that deliver the
system’s functionality. The view documents the system’s functional structure that demonstrates
how the system will perform the functions required of it. According to Rozanski and Woods
(2005), the functional structure model of the Functional View typically contains functional
elements, interfaces, connectors and external entities:

Functional Elements constitute well-defined parts of the runtime system that have
particular responsibilities and expose well-defined interfaces that allow them to be
connected to other elements. A functional element can be a software component, an
application package, a data store, or even a complete system.

Interfaces are specifications, defining how the functions of an element can be accessed
by other elements. An interface is defined by the inputs, outputs, and semantics of each
operation offered and the nature of the interaction needed to invoke the operation.

External Entities can represent other systems, software programs, hardware devices, or
any other entity the system communicates with.

The functional view funds on the elicitation of a set of requirements and according service,
which have been identified in the process of domain analyses and in architecture workshops.
Further, the requirements evolving from the different technologies provided by different
partners influence the functional view.

The following subsections introduce the services and components of the BRIDGE system as the
core architectural elements in detail. They provide an overview on what purpose and main
functionalities each component serves, and document what requirements they address.

6.1 Orchestration
Orchestration services provide support for the composition of services and workflows. The main
services are:

6.1.1 Transformation
The Transformation service provides generic format and structure transformation services. It is
not meant to interpret data but only do pure syntactical transformation. Such a transformation
could be conversion between media encodings or protocol conversion e.g. WS to ZigBee. Such
a service increases collaboration possibilities between agencies as they may build on different
technologies or equipment and would make information exchange thus impossible. This service
also protects from errors made due to improper interpretation of data.

Main Functionalities

 registerFormat: Registers a specific encoding or structuring of data.
 registerFormatForAgency: Registers that an agency wishes to receive data in specific

format.
 transformData: Transforms the provided input data to a given output format.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 59 of 136

Addressed Requirements
ID Summary

BRIDGE-143 The mesh network shall provide bridges for the eTriage bracelets

BRIDGE-156 The system shall process multimedia information collected during an
emergency incident (as a first step) received from social networks.

BRIDGE-169 Emergent interoperability

BRIDGE-296 he BRIDGE system shall be able to transport messages between nodes across
different networks

BRIDGE-356 The Workflow Service requires a standards-based interaction protocol between
involved middleware platforms

6.1.2 Triggers & Eventing
The Triggers & Eventing service represents an event management subsystem, providing event
channels, event taxonomies (types), and event log and history. Its main functionality is to
inform interested parties in abnormalities of the environment or observed entities and allows
them to infer how the current state has been reached. It may also include functionality that
triggers a specific number of services that are designated to deal with specific changes or that
have to start after a defined event occurs. More generally speaking this system allows to
specifically deal with state changes that are of interest or are relevant.

Main Functionalities

 registerState: This is mostly domain knowledge but has to be explicitly provided to the
system.

 registerInterestedParty: Provides the system with the knowledge where to forward this
information.

 createChannel: Collects a number of similar events and parties into a shared channel.
 Trigger: Informs the requested parties about the specified state change.

Addressed Requirements

ID Summary

BRIDGE-117 The triage system should trigger event of deteriorated vital values

BRIDGE-213 Events should be propagated in the network based on a Publish-Subscribe
mechanism.

BRIDGE-275 The system shall offer a publish/subscribe and event API for triage events

BRIDGE-372 The GUI should allow to jump in time, to see also historic aggregation
results/sub-events

BRIDGE-373 The GUI should show sub-events in a structured manner and with additional
information (included items etc.)

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 60 of 136

6.1.3 Workflow Management
Definition, storage and sequencing of activities and tasks (possibly based on standard workflow
models). Supports the sharing and re-use of workflow plans. Also enables the harmonization
and fusion of workflows from different agencies e.g. based on BRAWL. This enables to have an
overall picture of independent activities that are carried out with regard to specific tasks. Using
the harmonization capabilities it is also possible to define inter-agency dependencies between
workflows and tasks and have the engine inform about possible delays that would affect
unaware parties. The Workflow Management greatly leans on the Triggers & Eventing service.

Main Functionalities

 composeWorkflow: Allows creating a new workflow or connecting already provided
workflows.

 loadWorkflow: Loads the workflow from a document already containing a workflow in
some standard formatting. Transformation service may be used to deal with
incompatibilities.

 startWorkflow: Instantiates a specific workflow and starts observing relevant
dependencies and state changes.

 informWorkflow: Allows to provide third party information relevant for a workflow
into the system. This may also be done by referencing the Shared Dataspace.

Addressed Requirements

ID Summary

BRIDGE-155 The Workflow service should have access to ontology storage/retrieval
functionality

BRIDGE-188 The Workflow Service requires a standards-based interaction protocol between
involved middleware platforms

BRIDGE-214 Victims should be trackable in the workflow

BRIDGE-268 Probing workflows to make correspondences.

BRIDGE-281 Workflows and restrictions need to be flexible to allow for changes and
unexpected events in working practices.

6.2 Data- and Model Management
Data- and Model Management services support the acquisition, storage and exchange of data,
services and models emerging from diverse sources (sensors, systems, databases, public,
experts, colleagues, etc.) on the fly. The following paragraphs describe the main services.

6.2.1 Tagging
The Tagging service provides functions needed for the annotation of any identifiable BRIDGE
object (first responders, victims, buildings, data). This includes tagging with various sensor
devices. These tags can be any types of relevant pieces of information. The Tagging service
may also be used as a way of communication but instead of providing the intended recipient the
data is attached to the target it describes. This way whoever encounters the target receives all
messages left in relation with it. These tags are accessible by all stakeholders by simply
querying the identifier e.g. through the Shared Dataspace. Tagging also includes tagging with

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 61 of 136

various sensor devices this way providing continuous information flow rather than momentary
observations.

Main Functionalities

 addTag: Adds an information tag to an object.
 addTaggingSource: Registers a service (e.g. a sensor) as source of tags for this object.
 retrieveTags: Returns all tags provided for a specified identifier.

Addressed Requirements

ID Summary

BRIDGE-110 The system shall provide for directly addressing and communicating with any
connected triage tag

BRIDGE-175 The BRIDGE system shall allow the first responders to annotate/tag resources.
Rescue personnel is capable of identifying patients

BRIDGE-295 The triage tagging devices (e.g. bracelets) can be addressed to receive
commands

BRIDGE-324 A list of victims around given position, with given radius, should be exposed
somehow. For each victim give the latest sensor readings too, possibly in the
same one answer

BRIDGE-337 Tagging of resources should go beyond common properties and include
situated and contextual properties

6.2.2 Identification
The Identification service supports the unique identification of BRIDGE resources (actors,
tasks, devices, etc.) based on arbitrary attributes or persistent identifiers (provided by the
LinkSmart IdentityManager). Attributes can be any pieces of information as owner, location,
service provided or other distinguishing features. The service provides functionality to register
and query resources using the specified attributes therefore finding all types of resources only
by knowing their relevant feature. This can be extremely useful to filter the vast amount of
resources available at an emergency site. In order to ensure privacy it is possible to set whether
attributes are publicly announced, are only returned on request or are completely hidden.

Main Functionalities

 registerResource: Registers a resource into the system and attaches the provided
attributes to it.

 getResourceByAttributes: Returns resources that have the requested attributes publicly
announced.

 queryResourceByAttributes: Explicitly queries resources that hold the provided
attributes. These resources can than decide whether they respond.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 62 of 136

Addressed Requirements

ID Summary

BRIDGE-124 The first responders should be able to send resource information to the
command post. Victims should be trackable geographically

BRIDGE-175 First responders should be able to receive resource information of a specified
resource.

BRIDGE-210 The BRIDGE system needs to transmit resource allocation replies and resource
status updates from the field to the command post. The system shall allow the
user to allocate a set of resources to a specific task and location, using a map-
based allocation process.

BRIDGE-227 The BRIDGE system shall make the command post aware of any changes
concerning the resource information about a first responder.

BRIDGE-361 The BRIDGE system shall allow a first responder to update resource
information concerning another registered resource.

6.2.3 Service Catalogue
The Service Catalogue provides access to BRIDGE middleware services as an entry point where
all kind of services are considered. Services can be sensor measurements, software agent
services or human expert capabilities. These different kinds of services have different attributes
and different interoperability attributes which are handled in the agent yellow page directory or
device application catalogue. It is a mechanism for managing dynamic behaviour of devices in
the BRIDGE network, e.g. new devices need to be automatically discovered and registered at
the Proxy Registry. Similarly newly available experts have to be involved into workflows.

Main Functionalities

 registerDiscoveryMethod: Provide a procedure used to discover a specific type of
service, whether this is some kind of sensor or a human expert.

 registerService: Enables the registration of a specific service to be searchable in the
Service Catalogue according to its type.

 listServicesByType: Returns all services that provide the requested functionality.
 getServicesByType: Allows for a more detailed specification of the type of service

needed and only returns the most appropriate one.

Addressed Requirements

ID Summary

BRIDGE-112 Discover and mobilise local resources, integrate into professional response

BRIDGE-122 The BRIDGE system needs to discover and access available information
sources.

BRIDGE-283 The BRIDGE system shall assure an unambiguous identification of resources.

BRIDGE-351 Discovery of physical devices

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 63 of 136

BRIDGE-379 The service catalogue should expose the services available in the BRIDGE
system of systems in a uniform standardized fashion

6.2.4 Network Information
The Network Information service provides information about the infrastructure objects,
topologies and resources within the network. It includes graphical management and debugging
interfaces, programmatically accessible metrics and automatic service negotiations as the
BRIDGE MESH visualization (seen in Figure 29) and the LinkSmart status page. This can be
used by applications to adapt their information exchange and network usage behaviour. Also
configuration capabilities are included here where applications can specify their preferences and
have the middleware try to achieve the requested state.

Figure 29 – Visualisation of the BRIDGE Mesh topology

Main Functionalities

 getTopology: Returns a view onto the network topology from the point of view of the
queried device.

 getTransmissionCapabilities: Returns characteristic transmission capabilities from the
current location to another node as latency, bandwidth, reliability, etc.

 setTransmissionPreferences: Configures the local node to try to negotiate the provided
transmission preferences with other nodes.

Addressed Requirements

ID Summary

BRIDGE-183 System must provide information about currently available network bandwidth

BRIDGE-212 The system shall allow the incident commander to view information about the

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 64 of 136

current status of resources.

BRIDGE-229 The system requires a service that notifies it about resource status updates.

BRIDGE-299 DRM should be notified that the network connection is down by Network
infrastructure

BRIDGE-300 Network must provide an interface to access information about its status

6.2.5 Shared Dataspace
The Shared Dataspace service provides a persistent data space for sharing and distribution
among multiple clients. The data is organized into particular areas, also called topics. The use of
topics works very similar to a message queue. The topics are also persisted, so that agents that
connect at later times can find out what has been published so far. The Shared Dataspace has the
benefit of persisting data and enforcing the unified handling of third party data access. Topics
have a predefined format to enable automatic selection of persistence and relay requirements.
The topic names must be separated by a dot '.' and start with the purpose of the data items,
followed by the scope of the data items.

Main Functionalities

 pushData: Adds data to a specific topic.
 subscribeByTopic: Subscribes to any new information added to a specific topic.
 queryData: Retrieves all data persisted under a specific topic.
 removeData: As data is retained until and agent explicitly removes it, this method is

necessary to retain storage capacity.

Addressed Requirements

ID Summary

BRIDGE-129 The system requires a spatial database that allows storing, inserting, updating
and deletion of resource information.

BRIDGE-221 Critical data should be transmitted ASAP and not buffered

BRIDGE-223 Service(s) for managing basic units of information/knowledge shared through
the middleware

BRIDGE-249 The BRIDGE system needs to offer a persistency and buffering service.

BRIDGE-295 Access to personal data used in information aggregation should be limited

6.2.6 On-Site Storage
The On-Site Storage service or concept maintains domain (emergency/crisis management)
related knowledge (evolving over time). By using the On-Site Storage this knowledge can be
accessed without going over the Internet and thus with shorter response times. The maintained
knowledge can include generic parts such as expert directory/YP, material and substance
classifications, site/object related data, standard (inter agency) procedures, etc. Access to the

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 65 of 136

On-Site Storage usually happens over references provided by the party producing the data. This
way actual communication over network is lower and saves bandwidth.

Main Functionalities

 pushData: Adds data to the On-Site Storage and returns a reference to be passed to the
consumer of data.

 getData: Returns data stored under the provided reference.

Addressed Requirements

ID Summary

BRIDGE-141 The BRIDGE system should provide a storage and retrieval service for text,
imagery and sensor data collected during the incident

BRIDGE-148 Data repositories to store incoming data of the crisis situation

BRIDGE-223 Service(s) for managing basic units of information/knowledge shared through
the middleware

BRIDGE-255 Application to collect data from in-the-field incl. storage in data repositories

BRIDGE-257 The BRIDGE system shall provide a searchable library of predefined risk
models.

6.3 Communication
Communication services provide functionality enabling distribution of data as well as
invocations of services. The main services are:

6.3.1 Messaging
The functionality offered by the Messaging service comprises sending of messages to actors
based on their role, location, etc. It also provides support for broadcasting messages to a certain
group of receivers (e.g. all fire-fighters in an area). During message exchange, networking
technologies are automatically switched and gateways to sub networks deal with switching the
message to underlying nodes. All messages are identified by their sender and recipient.

Main Functionalities

 sendMessageSynch: Sends a message and blocks until a respond returns.
 sendMessageAsynch: Sends a message without waiting for it to be received.
 broadcastMessage: Broadcasts a message to a specified set of recipients. Broadcasted

messages are always sent asynchronously as it is inconvenient to distinguish who
received the message and who did not.

Addressed Requirements

ID Summary

BRIDGE-210 The BRIDGE system needs to transmit resource allocation replies and resource
status updates from the field to the command post.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 66 of 136

BRIDGE-254 Messages have to be authenticated

BRIDGE-276 The BRIDGE system shall provide a function to broadcast messages.

BRIDGE-291 Each smartphone registered at the BRIDGE system should be able to receive
messages from the command post

BRIDGE-296 The BRIDGE system shall be able to transport messages between nodes across
different networks

6.3.2 Media Streaming
The Media Streaming service provides functionality for streaming media over the network. This
is mainly accomplished through the asynchronous messaging service. Due to restrictions for
emergency networks the type and direction of streams is strictly regulated and basically no two-
way streams are provided. As it is impossible to create managed channels over emergency
networks, which have a highly dynamic behaviour, continuous streams are only provided at best
effort. Thus provided streaming is mostly characterized by having a buffer on recipient side and
observation of packet order ignoring late packets.

Main Functionalities

 establishStream: Negotiates the basic parameters for the streaming between producer
and recipient and returns a channel identifier.

 sendStreaming: Sends packets belonging to a stream over an already established
streaming channel.

 closeStream: Flushes remaining packets stored in the channel and removes the
additionally created parameters.

Addressed Requirements

ID Summary

BRIDGE-128 Streaming data has to be transferred from incident area to the DOC

BRIDGE-341 A two-way audio connection between DOC and incident area is ensured

BRIDGE-312 Video transmission must be continued after temporary loss of data

BRIDGE-141 The BRIDGE system should provide a storage and retrieval service for text,
imagery and sensor data collected during the incident

BRIDGE-198 Network configuration must provide at least 6.6 kbit/s two way data stream
between emergency personnel on site

6.3.3 Publish & Subscribe
Publish/subscribe is a (distributed) communication paradigm in which senders (publishers) and
receivers (subscribers) of messages (events) are loosely coupled through decoupling in space
and synchronization. Decoupling in time is provided by the Shared Dataspace. Event
Management builds on the paradigm of topics to which subscribers register to in order to

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 67 of 136

receive all published data from it. The assignment between subscribers and publishers can be
implemented in many forms, as look-up services, broker pattern or gossiping.

Main Functionalities

 subscribeToTopic: Register an entity to be interested in specific topic.
 publishToTopic: Distributes a piece of information to all subscribers of given topic.
 unsubscribeFromTopic: Deregisters entity from topic specific notifications.

Addressed Requirements
ID Summary

BRIDGE-157 First responders should be able to receive resource information of a specified
resource.

BRIDGE-213 Events should be propagated in the network based on a Publish-Subscribe
mechanism.

BRIDGE-275 The system shall offer a publish/subscribe and event API for triage event

BRIDGE-354 The BRIDGE System should enable first responders to receive resource
assignments from the command post.

BRIDGE-376 Aggregated information select by the user should be transmitted to the Master

6.3.4 Network Management
The Network Management service represents an infrastructural service. Its main purpose is to
provide network management support for multiple network protocols and topologies, including
ad-hoc networks, Mesh, WSN. With regard to the BRIDGE system the Network Connectors
will be leveraged to support ad-hoc deployed networks and co-incidental (opportunistic)
networks or a combination of both.

Main Functionalities
The Network Connectors provide a generic interface to communicate over various forms of
networks. To facilitate this ‘under the hood’ it administrates specific sub Network Connectors,
e.g. a mesh client service to join a multi-hop Bluetooth-based mobile ad-hoc network. Several
components are supposed to utilize the Network Connectors. Given specific constraints the
BRIDGE context management may configure the Network Connectors to switch between the
usages of diverse sub Network Connectors. For example, in order to save energy the Bluetooth
mesh Network Connector may from now on be used instead of the Wi-Fi mesh Network
Connector.

Addressed Requirements
ID Summary

BRIDGE-138 Data can be exchanged even if the network is partitioned

BRIDGE-163 The system should be able to connect to mobile network links

BRIDGE-277 The system shall facilitate to communicate over different network services

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 68 of 136

BRIDGE-296 The BRIDGE system shall be able to transport messages between nodes across
different networks

BRIDGE-249 The BRIDGE system needs to offer a persistency and buffering service.

6.4 Security and Trust
Security is provided by a combination of guidelines, models, and supporting technologies
including standards.

6.4.1 Privacy Level Agreement
Privacy must be handled by design and this service can only attempt to fulfil the personal
settings as stated by a user. Possible services related to a message are hiding the identity of the
sender, hiding the contents of a message or hiding the recipient of a message. However to be
able to provide these services a number of prerequisites have to be fulfilled that can be provided
by other presented services. Deliverable D12.1 – Privacy Protection and Legal Risk Analysis
fully elaborates the concept ‘privacy by design’.

Main Functionalities

 setPrivacyPreferences: Sets the personal preferences related to the level of privacy
wished to be achieved.

 setUpPrivacyEnvironment: Attempts to establish the environmental settings necessary
to enforce the provided privacy preferences.

 enforcePrivacy: Applies the configured privacy settings to provided data.

Addressed Requirements
ID Summary

BRIDGE-151 Anonymization - where not necessary personal identification data should be
removed in ways that enable genuine anonymization

BRIDGE-265 Personal data kept within the BRIDGE system (for example the expert
database / DEIN system) should be entered with informed consent of users

BRIDGE-295 Access to personal data used in information aggregation should be limited

BRIDGE-333 Persons performing information extraction should be limited in order to keep
the number of people seeing and processing personal information as low as
reasonably practicable.

BRIDGE-363 The BRIDGE system must comply to privacy regulations

6.4.2 Trust
The Trust implementation assesses the trustworthiness of an entity according to a specific trust
model provided a matching trust token as implemented by LinkSmart TrustManager. This can
be used traditionally for security protocols during key agreement and key exchange or by
applications for assessing trustworthiness of communication partners. Typical trust models to be
provided are X.509 certificate based Public Key Infrastructure and PGP certificate based Web
of Trust. The assessed trust is to be given as double value between 0.0 and 1.0. A detailed

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 69 of 136

description of the BRIDGE project’s Trust Framework can be found in deliverable D7.4 –
Scenario Bound Organization, Coordination and Information Meta Models.

Main Functionalities

 selectTrustModel: Selects a trust model to be used for evaluation of trust information.
 createTrustToken: Creates the trust token of an entity based on the currently selected

trust model.
 getTrustFromToken: Assesses trust of an entity based on a trust token e.g. a certificate.

Addressed Requirements
ID Summary

BRIDGE-61 Legitimate and secure data sharing

BRIDGE-70 It needs to be possible to visualise who is trying to use the network - device ID

BRIDGE-109 Data should be detected from unwanted disclosure

BRIDGE-254 Messages have to be authenticated

BRIDGE-326 Application Management Service

6.4.1 Cryptography
The Cryptography service provides cryptographic operations for protecting confidentiality,
integrity and authenticity of messages. It can be used separately by applications but is used by
default for all types of communication in the middleware. Services also include the generation
and safe storage of sensitive keys as it cannot be ensured that cryptographic procedures are still
safe if keys are handled improperly. Services automatically deal with providing necessary meta-
information for secure message exchange to increase usability. Deliverable D7.4 – Scenario
Bound Organization, Coordination and Information Meta Models covers a detailed description
of the implementation of the Cryptography service.

Main Functionalities

 generateKey: Generates a symmetric or asymmetric key and returns identifier to be
provided when using it.

 createCertificate: Generates a certificate for an entity to be distributed to partners.
 configureProtection: Configures what type and strength of protection should be applied

to data.
 protectData: Provides general protection for the provided data according to the

configured settings.
 unprotectData: Opens a protected data package according to the attached meta

information.

Addressed Requirements
ID Summary

BRIDGE-61 Legitimate and secure data sharing

BRIDGE-109 Data should be detected from unwanted disclosure

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 70 of 136

BRIDGE-247 Users need the possibility to encrypt data

BRIDGE-254 Messages have to be authenticated

BRIDGE-311 Messages in the network must be secured

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 71 of 136

7 Validation of the Architecture
This chapter describes our approach of validating and testing the BRIDGE architecture with the
help of perspectives. Such perspectives aim at providing input to and putting requirements on
the design and architecture. Each perspective on the BRIDGE middleware architecture consists
of a description and specification of one BRIDGE concept case. The needs for each single
BRIDGE concept cases has been discovered by the Domain Analysis workpackage, and
therefore, a BRIDGE concept case constitutes a support system that can enhance a capability of
a network of emergency management workers. A BRIDGE concept case involves at least one
specific human network of emergency management workers and one technical system of
systems. Such a BRIDGE concept case also represents a mini-project in BRIDGE to design,
engineer and market one concept, which requires contributions from several work package.

Each single BRIDGE concept case represents a prototype future system implemented with
services provided by the BRIDGE middleware and deployed in a system of systems. In this
regard, the concept cases probe the capabilities of the middleware in specific ways that are
otherwise difficult to test. In turn, the total set of BRIDGE concept cases provided means to the
end of developing the middleware and allowed for a proper consolidation of the set of services
to be part of the BRIDGE middleware.

The BRIDGE system of system is currently composed of these nine BRIDGE concept cases
described below. In addition, the BRIDGE middleware provides services to make other legacy
systems – any type of technical system, software, device, database, etc. – become a part of the
BRIDGE system of systems. Guidelines for how the BRIDGE middleware supports this
assembly and deployment are documented in deliverable D4.3 – Information and Deployment
View.

The following sections provide detailed descriptions for each of the BRIDGE concept cases.
Besides the textual documentation of the overall goal, addressed user needs, and main
functionality, these sections capture also the modelling of the structure and behaviour of each
system in the form of use case, activity and communication diagrams. Furthermore, the sections
show an image displaying the ‘instantiation’ of the architecture for each BRIDGE concept case,
visualizing the services needed and actually used by a concept case, in order to verify the
architecture. It needs to be noted that to the date of the submission of this deliverable not all
diagrams have been available.

The use case diagram documented for an individual BRIDGE concept case illustrates
dependencies and relationships among the system’s actors, and captures the expected behaviour
of this system. The activity diagram graphically displays the internal dynamic aspects and the
meshing of elementary activities of a BRIDGE concept case. The communication diagram
captures the dynamic exchange of messages between the components of a BRIDGE concept
case (internal), and between other BRIDGE concept cases also (external).

7.1 Robust and Resilient Communication

7.1.1 Overall Goal
The main goal is to create an ad-hoc networking infrastructure that provides networking
services on an incident site. The so called BRIDGE Mesh network allows other systems to
exchange data locally or send them to other networks such as the Internet. The HelpBeacons
application allows people to use their smart phones to advertise their need for help.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 72 of 136

7.1.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-66 Support for identifying misinformation on social media
BRIDGE-75 The system provides an interface to consider social media with the goal to

support emergency and crisis management.
BRIDGE-80 Declarative accounts of data processing steps and results of complex data

analysis processes such as data mining should be provided to stakeholders

7.1.3 Main Functionality
In an emergency situation the first network to become unavailable are cellular networks.
Although emergency forces have priority to use this form of communication, the access may
still be limited and victims at the emergency area have no possibility to send their help requests.
The concept case Robust and Resilient Communication provide the possibility to communicate
with devices in an emergency area over different exploitable channels. It comprises several
components:

1. Wireless Mesh routers that form an ad-hoc network (called the BRIDGE Mesh) to
provide a networking infrastructure for other systems on the scene (e.g., eTriage)

2. The HelpBeacons application that allows people to call for help using an Android
smart phone

3. The HelpBeacons Seeker application that is used by first responders to collect SOS
messages

The BRIDGE Mesh is an ad-hoc network, which will be based on deployed MESH Bridges,
which have multiple network interfaces beside a 802.11s interface. As first responders arrive at
the incident site and explore the region they carry the MESH Bridges with them and place them
at given distances. The MESH Bridges create an ad-hoc WiFi network, where data is forwarded
over multiple hops. Through this deployment the area gains network coverage. This network
can from now on be used by different emergency forces, as a shared medium, over which
communication or other data can flow. Additionally MESH Bridges accept local networks to
attach to them (like ZigBee networks, Bluetooth piconets, etc.). These local systems can from
now on be reached over the BRIDGE Mesh and data can be forwarded between them and the
Incident Centre.

The BRIDGE Mesh (see Figure 30) can be deployed during a crisis using wireless mesh routers
that provide the networking infrastructure. The wireless mesh routers form an ad-hoc
networking infrastructure that can be used by other concept cases to exchange data. All routers
provide wireless access points to allow other devices (such as smart phones, notebooks or the
eTriage bracelets) to join the network. Some routers provide gateways to other networks such as
the Internet and bridge different wireless technologies.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 73 of 136

Figure 30 – Infrastructure Diagram of the BRIDGE Mesh

The HelpBeacons System provides a way for people to call for help using their Android smart
phones. The HelpBeacons system uses the Wi-Fi wireless technology to advertise short help
messages. First responders that use a HelpBeacons Seeker application can collect beacons in
their vicinity and locate victims.

Technically, the idea is implemented by encoding short messages inside the name of the Wi-Fi
access point created by the victim’s smart phone. Any device in range can see these messages
using its Wi-Fi interface.

Figure 31 – The HelpBeacons App (left) & Front Officer using the Seeker Device (right)

The HelpBeacons Seeker application has been designed in a way that is does not need any user
intervention to collect HelpBeacons and send them to the BRIDGE Mesh. This allows the first
responder to fully focus on his/her tasks. Optionally, the first responder can be notified via
acoustic signals or vibration when a new HelpBeacon has been found.

Smartphones running the HelpBeacons application may join the BRIDGE Mesh and leave it
dynamically and thus, form an opportunistic network infrastructure. One smart phone running

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 74 of 136

the HelpBeacons Seeker application will collect the help messages and forward them via the
BRIDGE Mesh. Collected HelpBeacons are sent by the seeker device to the BRIDGE mesh that
provides connection to other BRIDGE systems such as the BRIDGE Master. Thus, the Master
can visualize information about HelpBeacons, such as the help message itself or the time the
help message was received by the seeker. If the GPS position of the victim and/or the seeker is
available, the Master can visualize the location of HelpBeacons on a map.

7.1.4 Integration with Other Concept Cases
The information that is collected by the HelpBeacons Seeker application is sent to the BRIDGE
Mesh network where a dedicated service first stores the received data locally. The data is then
transferred via the BRIDGE middleware to other interested parties. Thus, the BRIDGE Master
can access and visualize the help beacons.

7.1.5 Perspective on the BRIDGE Architecture
The concept case ‘Robust and Resilient Communication’ makes use of the following services
provided by the BRIDGE middleware (see Figure below). Also, use case diagrams, activity
diagrams and communication diagrams are provided.

Figure 32 – Robust & Resilient Communication Perspective

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 75 of 136

Figure 33 – Mesh Use Case Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 76 of 136

Figure 34 – Mesh Device Activity Diagram

Figure 35 – Mesh and HelpBeacons Communication Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 77 of 136

Figure 36 – HelpBeacons and SOS Mobile App Use Case Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 78 of 136

Figure 37 – HelpBeacon Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 79 of 136

Figure 38 – SOS Mobile App Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 80 of 136

7.2 Adaptive Logistics

7.2.1 Overall Goal
The BRIDGE concept case Adaptive Logistics characterizes large-scale emergency
management operations as Complex Dynamic Multi-Agency Distributed Systems. It explores
how the efforts deployed by all the systems’ human participants can be coordinated with
artificial components, in such a way that the BRIDGE system of systems as a whole displays
coherent, goal-directed behaviour, realizing its goals effective and efficiently.

7.2.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-56 Accurate dynamic description of resources, patients, evacuees
BRIDGE-58 Configuring Awareness and Communication in relation to management of

resources, patients, evacuees

7.2.3 Main Functionality
A dynamic multi-agency collaboration is organised using workflows (or more specific: a
‘WorkFlow Generation and Management (WFGM) sub-system’). To organize this collaboration
the WFGM sub-system requires system awareness and specific capabilities to plan, instantiate,
monitor and adjust activities. The Adaptive Logistics concept case uses an operational workflow
to establish collaboration between various BRIDGE system components.

System Awareness
The purpose of system awareness information is to make explicit what the capabilities of the
emergency management responders and their technical systems are: what roles, causes and
effects exist in the operation domain and what does the overall emergency management
operation currently tries to achieve.

The component does this by:

 Gathering knowledge regarding the capabilities and constraints of participating entities
and their own characteristic approaches to resource deployment

 Exchanging information regarding plans and intentions
 Searching for collaboration opportunities
 Dynamically keeping track of the current goals of the system

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 81 of 136

Figure 39 – Simple Workflow ‘Victim Evacuation’

Collaborative Planning
The Adaptive Logistics concept case explores the deployment of three WFGM mechanisms that
collaboratively compute workflows to coordinate the BRIDGE efforts:

 COMPASS/SMDS deploys a classic reasoning algorithm, iteratively constructing
workflows that achieve a given system goal. From the generated workflows, the best
matching the systems’ current requirements is selected. This approach will yield good
results for new complex goals that cannot be pre-planned.

 CoWS uses templates describing relevant domain information to construct workflows.
The templates contain gaps that need to be filled in with other templates or services.
This approach will show good results in environments where certain complex tasks
occur frequently and can be specified at design time.

 ATOM uses an opportunistic approach to planning and execution: based on a survey of
the current situation and rough notion of how to achieve a goal, only the first (or,
alternatively, next) step(s) are planned and executed. The planning of later steps is
delayed, based on the idea that the situation may change. In BRIDGE we will use
ATOM to coordinate the deployment of resources.

The WFGM mechanisms interact using the BRIDGE Annotated Workflow Language
(BRAWL). The workflow processes used are:

 Instantiation: Once a workflow has been selected for execution, the WFGM system
needs to configure the resources in the BRIDGE system of systems to execute that
workflow.

 Monitoring: Monitoring helps ensure the system accomplishes what it actually needs to
accomplish and to detect failure to accomplish or deviation from agreed-upon qualities.

 Adjustment: In case the monitoring mechanisms detect an (immanent) failure, the
WFGM system has a number of options, depending on the nature and severity of the
failure: Ignore, Reconfigure, Regenerate, Escalate, Reject.

7.2.4 Integration with other Concept Cases
Advanced Logistics establishes collaboration between various BRIDGE system components,
including DEIN, Situation aWAre Resource Management (SWARM), the Risk Analyser
Modeller and Advanced Situation Awareness - Prediction Modelling.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 82 of 136

7.2.5 Perspective on the BRIDGE Architecture
The concept case ‘Adaptive Logistics’ makes use of the following services provided by the
BRIDGE middleware (see Figure below). Also, use case diagrams, activity diagrams and
communication diagrams are provided.

Figure 40 – Adaptive Logistics Perspective

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 83 of 136

Figure 41 – Adaptive Logistics Use Case Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 84 of 136

Figure 42 – Adaptive Logistics Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 85 of 136

Figure 43 – Adaptive Logistics Communication Diagram

7.3 Federated Control Room Support

7.3.1 Overall Goal
BRIDGE Federated Control Room Support (FCRS) makes it easier for multiple agencies to
work together in complex emergency management operations. FCRS can be used to overcome
the lack of interoperability between the actual (legacy) systems with which the many
organizations at many locations must actually work.

7.3.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-59 Data Sharing between agencies
BRIDGE-61 Legitimate and secure data sharing
BRIDGE-73 First responders need to know the location of members of all agencies

7.3.3 Main Functionality
BRIDGE FCRS takes a novel approach to the establishment of interoperability in ad-hoc teams
across agencies and across borders. By taking a capability-driven approach that does not require
joint standards and a common terminology right from the start FCRS makes it possible to
achieve:

 Emergent standard procedures by evolving cross-agency operating procedures via
practical emergence from the actually available capabilities that agencies have to offer.

 Emergent standard terminology. Evolve cross-agency understanding of the capabilities
to provide information and to conduct work by means of emergence from actual
interactions involving the request and provision of services.

BRIDGE FCRS provides support for three basic tasks:

Team formation: The formation of cross-agency and cross-border teams that will work
together on specific processes such as air-support for fire fighting, evacuation, search
and rescue, or the transportation the wounded to hospitals.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 86 of 136

Team process monitoring: FCRS allows teams and commanders to monitor the
activities of simple and more complex joint processes, involving multiple agencies,
roles, tasks and systems.

Team communication: FCRS allows participants in teams to easily communicate
within a team via multiple modes of communication as they become available by means
of the infrastructure: chat, messaging, telephone, and videoconference.

The Team Formation Module consists of software that makes it easy for commanders to
assemble a team that is completely capable of handling all specific tasks that are required to get
the main job done. The key mechanism that makes this possible relies on principles of
professional self-organization, where each participant in the team takes responsibility for
acquiring all the specific support he or she needs to complete the tasks by means of smartly
structured requests and responses.

Figure 44 – Geographical View of Burn Wound Team

The Team Monitoring Module makes it possible for any team member to see what other team
members are doing and what progress they are making. This is done by visualizing the flow of
the smart requests and responses at different levels of detail. This allows teams to improve or
reconfigure themselves when critical services run into difficulties.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 87 of 136

Figure 45 – Process View of Evacuation Decision Team

The Team Communication Module provides easy access to available modes of communication
within a specific team and process.

The FCRS concept consists of two main parts: the FCRS graphical user interface (GUI) and an
advanced FCRS engine. The engine provides the advanced business logic to configure and
monitor teams. The GUI makes it easy for end users to easily make use of this powerful logic.

7.3.4 Integration with other Concept Cases
The FCRS concept emerged in response to the need for overall interoperability of all developing
concepts, at the level of business logic and human interaction. Via the BRIDGE middleware
FCRS can make use of all other concept cases to conduct operations, depending on the scenario.

7.3.5 Perspective on the BRIDGE Architecture
The concept case ‘Federated Control Room Support’ makes use of the following services
provided by the BRIDGE middleware (see Figure below). Also, use case diagrams, activity
diagrams and communication diagrams are provided.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 88 of 136

Figure 46 – Federated Control Rooms Support Perspective

7.4 Advanced Situation Awareness

7.4.1 Overall Goal
BRIDGE Advanced Situation Awareness (ASA) assists first responders on scene in increasing
situational awareness by supplying real-time visual and other information on the extent of the
disaster and its consequences.

7.4.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-98 The first responders operating in the field should have an improved awareness

of any risks and dangers at the incident site.

7.4.3 Main Functionality
The main functionality of the Advanced Situation Awareness concept case is to provide support
for risk analysis and decision making during emergency and crisis situations where the decision
time frame is longer than a few minutes. It consists of the following three components:
Hexacopter, Expert System, and Modelling Module.

Hexacopter
The Hexacopter is an unmanned aerial vehicle (UAV) system, which comprises

 Flying platform with six motors;
 Global Positioning System (GPS) and radar;

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 89 of 136

 Video and infrared cameras;
 On-board computer;
 Environmental sensors; and
 Ground control station.

The Hexacopter provides a live video from a bird’s-eye-view perspective, a parallel infrared
video, and real-time environmental sampling data, which help assess the magnitude of
destruction, fires and health hazards to first responders and affected population. The UAV can
be controlled manually or put into a pre-programmed automatic flight modus.

Figure 47 – Unmanned Aerial Vehicle

Figure 48 – Ground Control Station

Expert System
The Expert System is a software, used to automatically analyse the incoming environmental
measurements data supplied by the Hexacopter to the Ground Station. The data is compared
against national and international standards, and combined with expert recommendations. The
aim of the Expert System is to help the incident commander interpret the obtained
environmental data and ease the decision-making in a complex emergency.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 90 of 136

Figure 49 – Expert System

Modelling Module
The Modelling Module is used to create computer models of the incident site and of plumes in
case of an uncontrolled release. It can draw on the pre-programmed generic models of reality-
based structures contained in the BRIDGE Critical Infrastructure Library. This module enables
the user to assess the physical damage to buildings, estimate the number of victims, and predict
the dispersion of hazardous plumes based on metrological data.

Figure 50 – Plume Dispersion Model

The Expert System and Modeling Module can be deployed on interactive multi-user tables
aimed at incident command and command central, as well as on smaller tablet computers
carried by selected individuals. It is based on graphical risk models represented in a slightly

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 91 of 136

simplified version of the CORAS risk modeling language4. For foreseen types of emergency
scenarios, a library of predefined risk models will provide starting points for the analysis, to be
filled in and tailored to the specific scenario when it occurs.

7.4.4 Integration with Other Concept Cases
The different components of BRIDGE ASA assist in providing an accurate, real-time update on
the incident, strengthening the capabilities of BRIDGE Master and BRIDGE SWARM concept
cases.

7.4.5 Perspective on the BRIDGE Architecture
The concept case ‘Advanced Situation Awareness’ makes use of the following services
provided by the BRIDGE middleware (see Figure below). Also, use case diagrams, activity
diagrams and communication diagrams are provided.

Figure 51 – Advanced Situation Awareness Perspective

4 Mass Soldal Lund, Bjørnar Solhaug and Ketil Stølen: Model-Driven Risk Analysis. The CORAS
Approach. Springer, 2011.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 92 of 136

Figure 52 – Advanced Situation Awareness Use Case Diagram

7.5 Dynamic Tagging of the Environment

7.5.1 Overall Goal
BRIDGE Dynamic Tagging of the Environment concept case assists first responders in marking
and monitoring significant locations of the disaster site and in creating real-time situation
awareness. It aims to ease the annotation of the field with digital information targeting at an
improved spatial reference system and shared mental model for fire fighters. Such an annotated
disaster site enriches the process of spatial sense making performed by first responders in the
field.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 93 of 136

7.5.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-90 The triage tags should be easy to identify, in all weather and lighting

conditions
BRIDGE-92 The triage tags should not be easily exchangeable by victims themselves
BRIDGE-95 Any exchange of triage tags should be detectable.

7.5.3 Main Functionality
The Dynamic Tagging of the Environment concept case provides functionality to place several
types of real and virtual tags in the environment, and also to discover and explore marked and
tagged environment. Such a tagging process is as follows:

1. In their exploration process of the incident site, first responders mark specific points in
space either

a. physically through the deployment of a sensor tag or
b. virtually through some type of digital information such as a specific symbol, a

voice recording, a text, etc.
2. The Master receives the sensor values or the digital information associated with a GPS

position and visualizes them on the map.
3. Other first responder teams in the field use a mobile device with a map view or an

augmented reality view to discover the information deposited by the former first
responder team in the field.

Figure 53 – Tagging the Environment using Symbolic Icons

The Tagging Device
The Tagging Device (see Figure 53) forms the main point of access for the dynamic tagging
system and serves two purposes: First, the creation and deployment of dynamic tags in the form
of digital information, and second, the exploration of already deployed dynamic tags.

The Tagging Device already offers a range of pre-built icons that the user can possibly exploit
as tags. Each icon visually represents one possible situation that the user might like to report
back to his team members and the command post through the dynamic tagging system. If the
user selects one of these icons, the dynamic tagging system associates the current position to the
respective icon and stores it in the database. At the same time this icon appears on the map of

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 94 of 136

the Master. In a second optional step, the user might also want to bind a personal note with the
selected and positioned icon. Such a personal note can consist in a voice recording, an image,
written text or a drawing.

Visualizing Tags in the Environment
The Tagging Device is also to visualize the dynamic tags placed in the environment. Two
different visualization modes are available: The map mode (Figure 2) and the augmented reality
mode (Figure 3). In the map mode, icons representing each dynamic tag are displayed on a map.
For outdoors, a Google Map is used and the user’s position is acquired by GPS. For indoors, the
model of the building and roughly estimated positions are used.

The augmented reality mode presents the stream of the built-in camera with an overlay of
abovementioned icons representing a dynamic tag. The user operates the Tagging Device as a
‘lens’, scanning the environment by turning around and acquiring the digital information
associated with a dynamic tag in his current view. Touching on one of the icons with the finger
in either visualization mode, the user receives the digital information, either sensor data or
human-made information (e.g. voice recording), on the screen or through the loudspeakers of
the tagging device.

Figure 54 – Looking ‘through’ the Tagging Device using Augmented Reality Mode

Figure 55 – Using the Tagging Device as a Map Viewer Showing important Tagged Places

Sensor Tags
Sensor tags continuously measure environmental parameters such as air temperature, CO2
contamination, etc. (see Figure 4). First responders can deploy these tags in the environment
through clipping them to the relevant location or through throwing them towards a desired
direction. Once activated, the tags acquire the exact GPS position and start to send a stream of
sensor values to the command post.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 95 of 136

Figure 56 – Sensor Tag

7.5.4 The eTriage System
The BRIDGE eTriage system represents a specialization of the BRIDGE Dynamic Tagging of
the Environment concept case, since it assists in the marking and monitoring of victims and in
the creation of real-time situation awareness. The eTriage system is a tool for paramedics and
health workers for the registration, triaging and tracking the victims. It aims to ease the triager's
task and bridge the process from triage to hospital admission.

The eTriage system is made up of several components that work together, but independently, to
mark and monitor victims. The triage bracelet connects to the MESH network and serves as
network access point for all other sensors on this victim. The sensors are tagged by RFID and
the RFID reader in the bracelet is used to ‘pair’ the sensor and the bracelet by touching them for
a split second. In countries where ID cards have an RFID/NFC chip, the triager can simply
touch the victim’s ID to the bracelet to identify the victim.

Triage Bracelet
A colored, reflective plastic bracelet, just like the ones being used currently for triage in a
number of countries, is snapped on a patient’s arm. This plastic bracelet is augmented with
microelectronic components and various sensors that do not need contact with the victim's body
(e.g., air temperature, infrared, etc.).

Figure 57 – A Triage Bracelet

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 96 of 136

Triage Relay
The Triage Beacon is a small device that is intended to clip on a normal trouser belt like a
beeper. It needs no interaction from the triager; its role is to gather data from the disaster field
and transmit them to the command center in case the BRIDGE Mesh has a problem.

Clip-On Sensors
Clip-on sensors are those that need contact with the victim's body, e.g., heart rate, breathing
rate, blood pressure, etc. They allow monitoring the victim instead of simply marking him or
her. The sensors are intended to be used either by the triagers or by the medical personnel at the
assembly point, as needed.

Triage Tablet
The main purpose of the triage tablet is to visualize the triage data. It is intended to be used by
either triagers, or by the medical personnel at the gathering place. Two different visualization
modes are available: The map mode (figure left) and the augmented reality mode (figure right).
In the map mode, icons representing each patient are displayed on a map. Each icon contains the
most important triage data category, pulse and respiration rate. For outdoors, a Google Map is
used and the users own plus patient’s positions are acquired by GPS. For indoors, floor plans
and roughly estimated positions are used.

The augmented reality mode presents a camera stream on which again category, pulse and
respiration rate are overlayed as icons. The medic uses the tablet as ‘lens’, scanning the
environment by turning and acquiring triage data about his current view.

Figure 58 – The Triage Tablet in Two Modes

In both modes, a click on an icon reveals all data about a patient. As alternative, the triage tablet
comprehends an RFID reader which allows for scanning a patient’s bracelet in order to call up
the detailed patient information on the screen. The triage tablet can, additionally, function just
like a triage relay.

7.5.5 Integration with Other Concept Cases
The Dynamic Tagging of the Environment concept case provides information about the
environment (tags) and vital information from triaged victims bound to position information to
the BRIDGE Master. It uses the BRIDGE Mesh to get the data through to the Master Table.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 97 of 136

7.5.6 Perspective on the BRIDGE Architecture
The concept case ‘Dynamic Tagging of the Environment’ makes use of the following services
provided by the BRIDGE middleware (see Figure below). Also, use case diagrams, activity
diagrams and communication diagrams are provided.

Figure 59 – Dynamic Tagging of the Environment Perspective

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 98 of 136

Figure 60 – Dynamic Tagging of the Environment and eTriage Use Case Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 99 of 136

Figure 61 – Dynamic Tagging of the Environment and eTriage Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 100 of 136

Figure 62 – Dynamic Tagging of the Environment and eTriage Communication Diagram

7.6 Information Intelligence

7.6.1 Overall Goal
In all emergency management phases information about the current situation is vital. People
document any situation they are confronted with in social media. Hence, our aim with BRIDGE
II is to introduce a tool that allows the automatic analysis of such media data in addition with
live data from in-the-field and aggregates it in a sort of situational report.

7.6.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-66 Support for identifying misinformation on social media
BRIDGE-75 The system provides an interface to consider social media with the goal to

support emergency and crisis management.
BRIDGE-80 Declarative accounts of data processing steps and results of complex data

analysis processes such as data mining should be provided to stakeholders

7.6.3 Main Functionality
The Information Aggregator facilitates the aggregation of data collected during an emergency.
Currently, we focus on the aggregation and analysis of social media data (e.g., from Flickr or
YouTube) to support emergency management. Studies show that social media data is an
important instrument during a disaster, due to the fact that people report and describe any kind

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 101 of 136

of situation they are involved in. Hence, the increasing usage of social media platforms delivers
valuable insight into crisis-related issues.
The BRIDGE Information Intelligence comprises several components:

 Aggregation Component: It performs the aggregation based on sub-events (= specific
hotspots of a crisis) and shows the results to the user (see figures below).

 Data Simulation Component: It allows the simulation of data during a running
exercise. This tool can also be used for training purpose.

 Data Collection Component: It is implemented as an Android-App and allows the
collection of live data (from within the field).

Figure 63 – Aggregation Component Graphical User Interface

The Aggregation Component performs the aggregation based on online clustering algorithms. It
aggregates the data based on their textual and location content. The aggregation can be
performed on social media data (e.g., Twitter) and on live data coming from within the field.

The results are shown to the user via a web-based implementation reachable from any browser
(e.g., Mozilla, Google Chrome etc.). The GUI contains a map-representation and a detail view
for sub-events (see figures below). In addition, it allows filtering the results based on geo-
location and/or keywords.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 102 of 136

Figure 64 – The Data Simulation Component

The Data Simulation Component allows the creation of data based on a given scenario
description (XML). The description can be also administered by the tool (see Figure 64). The
creation of the dataset follows this scenario description. It comprises short text messages (i.e.,
simulated tweets), which are based on the effect the incident might have. For the generation
process different sub-event attributes are needed (see figure right-hand-side), e.g., start of the
sub-event (offset) during the exercise, description, some textual phrases for the generation
mechanism etc. The data simulation tool can be used, e.g., for training to integrate (simulated)
‘social media’ into a running exercise.

Figure 65 – The Data Collection Component

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 103 of 136

The Data Collection Component allows the introduction of live data into the aggregation
process. The Smartphone App bases on the concept case ‘Local Cloud’ which was presented at
the first BRIDGE review in Flum. It allows directly the integration of text messages and
pictures from persons in the field into the aggregation mechanism. The idea is to enrich the
aggregation process with this live data.

7.6.4 Integration with Other Concept Cases
The information aggregated by Information Intelligence concept case is passed to the Master
Table. This is performed by selecting a specific sub-event which is of importance for the
emergency agencies. In addition, it makes use of the general ideas and implementation of the
former ‘Local Cloud’ concept case.

7.6.5 Perspective on the BRIDGE Architecture
The concept case ‘Information Intelligence’ makes use of the following services provided by the
BRIDGE middleware (see Figure below). Also, use case diagrams, activity diagrams and
communication diagrams are provided.

Figure 66 – Information Intelligence Perspective

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 104 of 136

Figure 67 – Information Intelligence Use Case Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 105 of 136

Figure 68 – Information Intelligence Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 106 of 136

Figure 69 – Information Intelligence Communication Diagram

7.7 Situation-Aware Resource Management

7.7.1 Overall Goal
BRIDGE Situation aWAre Resource Management (SWARM) combines resource management
(resource identification, involvement, task assignment, status reporting) with technology for
achieving situation awareness, in order to:

 Provide first responders with a continuous overview of the resources in their immediate
surroundings (including human resources);

 Communicate the state and context of human resources (e.g. their condition and health,
environmental conditions like temperature, background noise, etc.);

 Provide better context-aware predictions of activities of resources, e.g. estimated times
of arrival for moving resources.

The objective of the BRIDGE Situation-Aware Resource Management concept case is to
provide drastically improved support for resource management during emergency response
operations.

7.7.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-58 Configuring Awareness and Communication in relation to management of

resources, patients, evacuees
BRIDGE-71 Resource allocation should include negotiation rather than simply the

movement of resources
BRIDGE-85 The first responders want to have an overview of existing resources available

for the incident.

7.7.3 Main Functionality
The BRIDGE Situation-Aware Resource Management concept case enables its users to identify
and announce resources, to view information about resources from different agencies in real-

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 107 of 136

time, and to allocate resources to specific tasks and locations. It is an agent-based distributed
system running on mobile devices (smartphones, laptops, tablets, MDTs) in combination with
cloud-based services. Via these latter services, a tight integration with the Master concept is to
be expected: resources and their statuses will be visible as clickable icons on an interactive map.
Also, the assignment of resources to tasks and usage of the related decision support system can
be done directly from the interactive map.

Various different communication media and protocols can be used by the BRIDGE Situation-
Aware Resource Management concept case in order to provide a robust and fully functional
application even in circumstances with limited connectivity.

The main smartphone functionalities are:

 Get insight into:
o Location of the incident;
o Location of command/control posts;
o Location and status of surrounding resources;
o Location, assigner and status of my current task.

 Inform others about:
o First responder task status;
o First responder personal status.

 Direct (emergency) voice contact with:
o (Assistant) Incident Commander;
o Any other person (configurable).

The main functionalities provided on the BRIDGE Master System are:

 Get insight into:
o Location and status of resources;
o ETA for moving resources;
o Current tasks and their status.

 Inform others about:
o New task assignments;
o Dynamic team formation.

7.7.4 Integration with Other Concept Cases
The SWARM concept case integrates the Master Table with a general purpose smartphone
application through a secure publish/subscribe service provided by the BRIDGE Middleware. In
addition, the SWARM concept case is able to make use of the BRIDGE Mesh for the
communication between end-user devices and with the cloud services, but it is also be able to
exploit HTTP connections over Wifi/GPRS/UMTS, if available

7.7.5 Perspective on the BRIDGE Architecture
The concept case ‘Situation-Aware Resource Management’ makes use of the following services
provided by the BRIDGE middleware (see Figure below). Also, use case diagrams, activity
diagrams and communication diagrams are provided.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 108 of 136

Figure 70 – Situation-Aware Resource Management Perspective

7.8 Master System

7.8.1 Overall Goal
The BRIDGE Master System concept case assists the command post in keeping a common
operational picture among central actors during a major incident.

7.8.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-85 The first responders want to have an overview of existing resources available

for the incident.
BRIDGE-96 The first responders should always be in control of how much and which type

of information they convey to the BRIDGE system.
BRIDGE-67 The emergency personal needs to have an overview of the victims' location

and vital state.

7.8.3 Main Functionality
The Master provides functionality to present and act on three types of information, which are
accessible through the BRIDGE system of systems:

Information about the incident, e.g., incident location and number and triage status of
victims, incident information added by incident response teams

Information about the response, e.g., number and position of police, fire and health
vehicles

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 109 of 136

Information from external services, e.g., weather, Information Intelligence (Flickr,
YouTube, media)

The Master System allows the management of resources registered through the BRIDGE
concept case ‘Situation-Aware Resource Management’ (see Section 7.7). Also, the Master
System provides access to the 3D simulation and risk models produced by the BRIDGE concept
case ‘Advanced Situation Awareness’ described in Section 7.4.

The BRIDGE Master System will be available on three different devices (see Figures below):

 Tablet for use by individual leaders
 Touch sensitive table for use by the incident command team
 Ordinary PC for use by operational centres

Figure 71 – The Tablet Version of the Master Table

Figure 72 – The Master Table Surface

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 110 of 136

Figure 73 – The Large Screen Version of the Master Table

7.8.4 Integration with Other Concept Cases
The BRIDGE Master System integrates with almost all other concept cases, because it
constitutes the information sink of the BRIDGE system of systems. It provides information
visualisation and allows for an effortless exploration of this information.

7.8.5 Perspective on the BRIDGE Architecture
The concept case ‘Master System’ makes use of the following services provided by the
BRIDGE middleware (see Figure below). Also, use case diagrams, activity diagrams and
communication diagrams are provided.

Figure 74 – Master System Perspective

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 111 of 136

Figure 75 – Master Use Case Diagram

Figure 76 – Master Activity Diagram

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 112 of 136

Figure 77 – Master Communication Diagram

7.9 First Responder Integrated Training System

7.9.1 Overall Goal
The main objective for the concept case BRIDGE First Responder Integrated Training System
(FRITS) is to establish an optimal learning and training methodology, supported by an
integrated portfolio of sub-systems that will improve the quality of emergency response and
crisis management in intra-agency and inter-agency operations.

7.9.2 Addressed User Needs
This concept case addresses the following user needs that have been identified as part of the
work undertaken by the Domain Analysis workpackage.

ID Summary
BRIDGE-76 Any acquired data should be logged for later study or legal purposes.
BRIDGE-226 Training systems should be able to simulate patient statistics (pulse, BP etc) in

order to create realistic opportunities for collaboration during multi-agency
exercises.

BRIDGE-216 Those participating in training exercises will be exposed to risks (for eg fire or
fumes). Training systems should make those participants aware of expected,
developing and changes in their risk exposure.

7.9.3 Main Functionality
FRITS will use BRIDGE developed methods and tools together with COTS (commercial-of-
the-shelf) technology to ensure flexibility and to provide scalability for different end-user needs.
The concept is divided into modules, focusing on training, exercises and proper evaluation for
improvements:

 Training methodology tools
 Evaluation tools
 Simulated training; live, virtual and constructive systems (COTS-technology)

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 113 of 136

 ITE – Integrated Training Environment

By combining two or more of these modules, FRITS will help prepare all levels of responders
(operational, tactical, and strategic) to improve their training and exercise activities. Also, by
focusing more on using various virtual and constructive tools in addition to live exercises, a
quantified cost effective end-result is possible to achieve over a relatively short time-frame,
ranging from base theory to large-scale multi-agency exercises.

Figure 78 – FRITS Tools for Exercise Analysis, Planning, Execution, Evaluation, Lessons Learned

The idea behind FRITS is that tailoring any of these tools creates a scalability and flexibility in
order to achieve quality assured training and exercise objectives and be able to extract and
utilize the outcome in a lesson learned repository. This is crucial for the competence progress
for both individuals and teams, and makes all parties better prepared for the real incidents.

The main training audience will utilize this concept case for training outcome, by the help of
observers and evaluators using predefined templates and sets of evaluation criteria's. The
communication module, that might be standard operational equipment and/or software based
solutions, which trains communication between the actors. This may also be used to support the
communication between exercise control centre and observers during the exercise.

Figure 79 – Lessons Learned Repository in the MeTracker

7.9.4 Integration with Other Concept Cases
The BRIDGE concept case ‘First Responder Integrated Training System’ represents an
individual concept case, which does not necessarily integrate with other concept cases. The
reason for this is the comprehensive infrastructure it requires for communication, which needs

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 114 of 136

to be de-coupled from the remaining communication infrastructure used by the other concept
cases. However, a common baseline integration driver for use in WISE is available for BRIDGE
FRITS connectivity to other applications (both BRIDGE-specific and common protocols), if
applicable. A typical setup here is integrating the MasterTable with FRITS.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 115 of 136

8 Architectural Qualities
The nature of a software architecture or middleware should be describable by a collection of
meaningful, desirable, consistent and testable qualities, referred to as architectural ‘qualities’ in
this document. These qualities should capture the overall non-functional attributes of the
middleware, although they may also address aspects of functional behaviour. They are the
means by which a middleware can be characterized and distinguished from other architectures.

The formulation of BRIDGE middleware qualities outlined in this chapter is ongoing and has
been subject to several influences:

1. Challenges arising from domain analysis, engagement with stakeholders, and
investigations of ethical, legal and social issues in IT supported large-scale, multi-
agency emergency response. These challenges highlight limitations of existing
emergency management information systems (EMIS) as well as limitations of broader
computing philosophies such as mobile, ubiquitous or cloud computing that are relevant
to this field. When considering practice-based requirements and wider ethical, legal and
social aspects specific to emergency response, it becomes necessary to augment
traditional EMIS and computing philosophies. The challenges have so far been outlined
in deliverables 2.2, 2.3, 12.1 as well as various academic publications.

2. The continuous iterative development of the BRIDGE middleware in relation to
BRIDGE concept cases (see Chapter 7 above) and its particular manifestation as a
working prototype middleware at this point. The various qualities listed below have
implications for design, and their ongoing definition through research activities is being
folded into design through interdisciplinary discussion and co-design workshops.

3. Internationally standardized definitions of architectural quality attributes, such as those
identified in the ISO/IEC standard 9126 on product quality in software engineering.
While guidance was taken from standards such as this, the unique nature of the
BRIDGE middleware and application domain necessitates introduction of selected non-
standard architectural qualities as described in Section 8.1.

This Chapter first presents a list of architectural qualities that define the BRIDGE middleware
and then turns to describing work on the formulation of practical design guidelines that can help
developers and users to work towards realising these qualities.

8.1 Architectural Qualities List
Transparency gives users control by supporting inspection of designs, operating parameters,
data flows by informed users. It builds upon general design principles of simplicity and
separation of concerns.

Interoperability is supported through the middleware so that systems can exchange
information with other systems, according to a set of protocols and/or standards; these systems
are said to be compatible, and the system is said to be compliant with the standards it is able to
enforce.

Emergent Interoperability: The middleware supports the achievement of interoperability
under the unanticipated contingencies of emergency situations, and through this the real‐time
mixing and matching of diverse technologies, including legacy and novel technologies from
outside the domain of emergency response, such as environmental sensors, insurance databases
or personal mobile devices.

Flexibility supports informed users in evaluating and changing parameters, data flows, and the
components in a particular assembly of systems into a system of systems. It gives users control
to improvise and adapt the system to their local requirements (work practices). They do not need

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 116 of 136

to adopt the whole (or the implicit logic) in order to get the benefits afforded by individual
systems.

Responsibility BRIDGE system supports users in making themselves aware of technical, legal
or regulatory regimes, plans and social/ethical constrains that may affect operations, for
example around data protection. At the same time, while imposing standard structures and
procedures, systems must, insofar as possible, allow flexibility and deviation in their
application.

Formal decision support makes users aware of technical, legal or regulatory regimes, plans
and social/ethical constrains that may affect operations. Highlights and explains, insofar as
possible, consequences of deviation from default settings.

Privacy supports definition and adherence to privacy preserving policies, rules, techniques as
well as exceptions to ensure that information can be collected, shared and used in appropriate
ways.

Privacy by design reflects and vindicates privacy preserving policies, rules, and techniques and
ensures that information can be collected, shared and used in appropriate ways, depending on
the context and situation.

Security offers the ability to be confident that privacy and data protection policies are respected
by providing secure data storage and flows based on informed consent or appropriate
exceptions.

Traceability allows for all transactions (addition, amendments, deletions, etc.) to be traced to
individual actors (human or non-human).

Mixed Intelligence and collaboration: A commitment to support collaborative human sense-
making that leverages computational support. All response technology should actively nurture
cooperation, collaboration and partnership formation.

Coherence: Bridging diversity of organisational structures, processes and practices, of
communication channels, tools, networks to enable collaboration. Coherence balances (does not
erase) diversity through flexible standards, translation, wrapping, virtualisation.

Graceful degradation characterizes the ability of the system to not lose its qualities suddenly
(and without a prior warning). Networks may be unavailable or disrupted; conditions may not
be suitable for technology use. The BRIDGE system should have the ability to work on/offline,
to be put down (and work in the background, e.g. through unobtrusive peripheral data capture),
and to continue to operate with a lower level of quality rather than failing when conditions are
not optimal.

Versatility refers to the system’s usefulness and ease of use. The BRIDGE System should be
useful in everyday work, throughout all phases of emergency response.

Scalability addresses the need for the system to satisfy anticipated changes of the processing
demand (throughput). This includes increases/decreases of the number of clients, size and
number of data records, and additional processing functions.

Overview: Response technology, even when focused on agent-driven tasks, should seek to aid
response-driven tasks, such as planning, coordination and resource management.

Availability: The system should remain available at all times; in case of temporary lack of
availability, the system should provide timely warning to its users about the foreseen lack of

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 117 of 136

availability in the near future, and indicate the alternative solutions and the disaster recovery
and continuity measures that need to be taken

Performance: The system should maintain its response time towards its users within acceptable
limits; this means that its throughput should be above certain values, within a normal utilization
rate.

Reliability: The system can be trusted to provide accurate and consistent functionality at all
times

Reversibility supports putting into practice the conditions that will facilitate open-ness of
design in use rather than closure. It means that how technologies can be used for good remains a
matter for negotiation and appropriation.

Modifiability and Evolvability: the system is able to support change without a notable change
of its performance; evolvability means that the system change is supported by design

Capacity requirements define the system volume required for data storage, maintenance of the
storage data and define the bandwidth requirements necessary to support concurrent users.

Load/Utilization specifies the user volume or processes/threads active in the system. Utilization
requirements identify the maximum acceptable load on the components of the system (network
interface, the database server, CPU, memory, etc).

Compatibility defines the ability of two or more systems/components to work together and/or
exchange data. Backward compatibility must also be considered if a product must work with an
earlier version (s) of the same product. Compatibility is connected to Testability: What testing is
needed when the system hardware/software is upgraded?

Compliance include specifications, guidelines, and/or standards that a system must be
compliant with for legal, ethical, and/or interoperability reasons. Compliance considerations can
be industry or corporate specific, cross international boundaries or be regulated by government
laws and/or restrictions.

Maintainability identifies the actions that must be considered to ensure a system can be
serviced after initial configuration, setup, and startup tasks have been completed. Ease of
maintainability is an indicator of how easily a system can be modified to add new functionality,
correct defects, improve performance, or adapt to a changed environment. Aspects to consider:

Portability defines how easily a system, or its components, can be migrated to another
environment (either hardware and/or software). Portability addresses the ability of a system to
change environments.

Recoverability defines actions to be taken when data is lost or when a system becomes
unavailable. It also specifies how soon the system needs to be back online in the event of a
failure.

Reusability addresses the use of software components, objects, tools, documentation etc., that
were previously developed for another project or system that can be used to reduce the
development cycle and costs on another project. Aspects to address:

Usability specifies the attributes, which make the system easy to use: user interaction,
application navigation, screen layout and display requirements. (Some usability requirements
are related to User Interface requirements, others relate to the service consumer’s ability to use
the Service effectively, based on requirements for language support, support for disabled users,
user platform and usability aids, e.g. context sensitive help, or business usage help desk).

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 118 of 136

Auditability refers to a sequence of artifacts (data entries) which provide a retrievable record
for an activity or action performed in the system. The activities can refer to Exception Handling
or Logging actions.

Internationalization specifies constraints on the required languages and locales the system
must support. A locale represents a specific geographical, political, or cultural region, and
defines the user preferences for that region, such as currency, date format, number format, etc.

8.2 Towards BRIDGE ELSI Design Guidelines
Realising architectural qualities in an open system is only partially a matter of technical
middleware design, and it is a complex challenge. In other fields of computing, design
guidelines have been developed to provide practical guidance for designers and users. In this
section, we begin a process of formulating such practical guidance to help BRIDGE designers
and users realise the architectural qualities of the BRIDGE middleware. This is the first draft of
BRIDGE Ethical, Legal and Social Issues (ELSI) Guidelines. They focus on ethical, legal and
social issues arising in relation to IT use in the response phase to major incidents or disasters
and large scale multi-agency interoperability, but the considerations involved connect deeply
with broader ELSI design challenges in IT Innovation. Hence, some more general design
guidelines are also provided.

It is important to highlight that the realisation of architectural qualities in general and those that
respond to ethical, legal and social issues in particular is not just a technological matter, but a
matter of technology-in-use. This is because ELSI arise at initial design time and during the
implementation, appropriation and use of IT. In the design research literature these are seen as
interlinked phases of innovation and in need of two design activities ‘design for use’ and
‘design in use’ (Büscher, Simonsen, Bærenholdt, & Scheuer, 2010; Ehn, 2008; Hertzum &
Simonsen, 2011). Design in use is done by the end-users of technologies. Hence, the audience
for these guidelines are IT designers, but also the prospective direct and indirect users of
BRIDGE technologies (Figure 80).

Figure 80 – Stakeholders involved in design-in-use

In the UK, statutory ‘category I’ responders (police, fire, and ambulance services, local
authorities, healthcare organizations, and government agencies) may exchange information with
a range of category II ‘co-operating responders’ (utilities companies, Internet, social media and
telecommunications service providers, highway agencies, railway, underground and airport
operators). If a 112 call is made, for example, the telecoms company will disclose the caller’s

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 119 of 136

location to emergency agencies. The Italian government is said to have used cell-phone data to
locate Italian citizens after the 2011 disaster in Japan5, and the city of Amsterdam is testing
techniques to track people’s mobile phones within the impact area of chemical accident to
support incident management (Steenbruggen, Borzacchiello, Nijkampa, & Scholten, 2013). In
addition, a range of volunteer organisations such as the Red Cross and commercial
organizations such as insurances, supermarkets or hotels may share information, and
information is also mobilized by the media and those affected by a crisis. Finally, what
information is mobilized in emergencies and how this is done affects and shapes society,
affecting citizens and other members of the public (including ‘irregular’ or ‘non-citizens’ such
as tourists, the homeless or unregistered immigrants.

These guidelines constitute a living document that invites contribution. The benefit of design
guidelines is generally best realised by implementing effective processes for their
implementation6. To this aim, the BRIDGE team is developing ways of supporting:

 Education – motivating and enabling people to read and engage with the guidelines.
 Enforcement – designers and users may be willing to consider these guidelines, but to

really work, there needs to be a process of evaluating compliance.
 Exemption – users and designers may find it necessary or opportune to breach these

guidelines. Any enforcement process should include a fast and simple exemption
process.

 Enhancement – there should be processes of regular review and adaptation and adding
guidelines is encouraged.

These guidelines seek to serve designers and users of BRIDGE systems by:

• Providing an overview and reminding stakeholders of critical ethical, legal and social
issues in IT supported crisis management (ELSI).

• Supporting the achievement of architectural qualities in design and use.
• Provoking discussion among designers, researchers, policy-makers, users, citizens and

other members of the public and politicians.

They are based on literature review and research and prescriptive, but they are not rigid
standards. They are prescriptive in the sense that they seek to inform design and appropriation
with a useful set of DOs and DON’Ts.

8.2.1 Design process, Evaluation, Appropriation

Appreciate that innovation is socio-technical.
Guideline: Appreciate that IT supported crisis management is a highly sensitive area of socio-
technical innovation.

Comment: Highly consequential positive and negative unintended ethical, legal and social
consequences can ensue from embedding novel technologies in the diverse organisations and
work practices of crisis management. Maximise opportunities to anticipate and explore these

5 Senior Irish Fire Officer, personal communication.

6 This document loosely takes inspiration from the extremely thorough and comprehensive ‘Research-
based Web Design & Usability Guidelines’ published by the US Department of Health and Human
Services and the US General Services Administration http://guidelines.usability.gov [Accessed 16
September 2013]

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 120 of 136

consequences. Do not wash your hands off the responsibility for such transformations by
assuming that technologies are neutral and simply open for good or bad human use. They are
not. Do realise that technologies can intrinsically embody morality.

Example: ‘Racist’ face recognition (Introna 2004)

Sources: Introna 2007

Establish user requirements
Guideline: Utilise all available resources to better understand user requirements

Comment: Realise that users include not only the statutory emergency responders, but also –
perhaps indirectly – members of the public, citizens as well as persons who may not be captured
in digital systems, but who are often disproportionally severely affected by disasters – the
homeless, illegal immigrants. Actively involve users by allowing them to appropriate prototypes
of your technologies and experimentally explore their use in as realistic as possible contexts.

Understand and support existing and emergent future practices
Guideline: Ensure that designs support ‘good’ existing and emergent future practices of
noticing and dealing with ethical challenges and social issues, and of negotiating legitimacy.

Comment: Consider how the basis for noticing and dealing with ELSI is likely to be
transformed in the process of bringing your technologies into use.

Example: Will people be able to understand the spread and persistence of personal information
well enough to share information with other parties?

Practice a disclosive design ethics
Guideline: Utilise all available means to build transparency and reversibility into the
technology.

Comment: The morality of technology-in-use is not defined by humans alone. Technology, too,
has morality and people need to be able to notice and manage this. Disclosive ethics is a way of
dealing with the morality of technology in practice (Introna, 2007). This morality (the way it
operates, the choices it makes, whom it in(ex)cludes, how it ‘looks’ at things (what it registers)
can be opaque, especially in the case of IT technologies / Software. Disclosive ethics demands
transparency and reversibility (described as architectural qualities in Chapter 8).

Example: Ubiquitous computing (Weiser 1991, 1993), still the prevalent paradigm in IT design,
claims that technology works best when it works silently in the background, in a way that it is
hardly noticed, seamlessly integrated in human practices. While this is highly plausible in terms
of a natural feel of technology and its embodiment in practices, it at the same time black-boxes
technology and puts the user out of touch with (alienates from) its workings, making it harder to
understand what it is doing and reflect on its morality. Disclosive ethics wants to open these
black-boxes, which does not mean that ‘technology has to be transparent all the time, but that it
is important to disclose its workings on an ongoing basis, in order to maintain reversibility’
(Introna, 2007).

8.2.2 Qualitative Improvement of Large Scale Emergency Response

Define ‘improvement’ (beneficence) with a wide range of stakeholders
Guideline: Develop a good understanding of the improvements sought through technology.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 121 of 136

Comment: New technologies often engender complex transformations of work practices. It is
therefore useful to define broader improvements or effects sought than merely ‘more
information’.

Sources: (Simonsen and Hertzum 2011)

8.2.3 Risk Assessment

Support faster and more comprehensive reasoning about risk
Guideline: Enable not only consideration of pertinent facts but also innovative IT supported
ways of exploring and reasoning about risks and their uncertainties.

Comment: Uncertainty is often seen as an evil that needs to be eliminated before good
decisions can be taken. Under this paradigm, incident commanders’ tendency to work on the
basis of known problems and experiences creates brittle, potentially dangerous knowledge
practices (Rake & Njå, 2009). There is another way of looking at uncertainty, which is that
uncertainty and ignorance of important factors (e.g. the possible height of a Tsunami wave) is
inevitable and one must work with uncertainty. A good way is to put oneself in a position where
pockets of non-knowledge become visible (and thereby addressable). Using methods to create
surprises and explore potentially cascading consequences, e.g. by designing and carrying out
(thought) experiments and debating matters with people with many different perspectives and
forms of expertise (Gross, 2010) (Surowiecki, 2004) (Callon et al., 2007; Pauwels, 2011). These
methods also need technological support. How do we create tools that help actors make their
knowledge and their assumptions and lack of knowledge, information visible in the flow of an
unfolding emergency? How can responders notice what they don’t know? Identify need for
external expertise? Such support might include an ability to log questions, assumptions,
information needs, ideas so that others – in or outside the emergency – can contribute (however,
see http://www.theguardian.com/environment/2011/jul/12/bp-deepwater-horizon-oil-spill-
crowdsourcing).

Address new liabilities in IT Supported Risk Assessment
Guideline: Allow people to be aware of the best technologies to use for risk assessment, make
an informed decision on what to use and how.

Comment: Technologies may significantly enhance the ability to understand risk and define
appropriate response measures. However, they may not always be available fast enough. Yet,
with hindsight, responders may find themselves at the heart of malpractice lawsuits due to the
fact that ‘they could have known’. There needs to be support for making fast, informed
decisions over which kind of technologies will be the most appropriate to use in risk assessment.
Also maybe support to document these decisions.

8.2.4 Situation Awareness

Support people in configuring awareness for distributed collaboration
Guideline: Support collaboration and communication across distributed environments in a way
that allows people to become and make others aware of what is happening in their space with as
little overhead as possible.

Comment: Awareness is ‘not simply ‘reactive and contingent on the external world’ (Vera
2003: 283) but rather … reflexively constitutive of the world’s significance, which in turn gives
(them their) sense’ (Suchman, 2007). To dynamically construct situation awareness more
effectively with advanced IT, people do not just need a ‘common operational picture’ as in a

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 122 of 136

literal birdseye overview of resources and activities, but the capacity to collaboratively reason
and communicate.

8.2.5 Command and Control

Support Role Improvisation
Guideline: Make it possible for people to take on different roles in relation to IT systems.

Comment: Role improvisation and the fact that planned organizations have to work alongside
emergent ‘adhocracies’ makes it necessary to cater for emergent interoperability.

Example: After it had been determined that there were no further bombs in the government
buildings in Oslo after the attack on 22/7/2011, ambulance doctors went inside the buildings,
doing triage with fire fighters. This was in response to a perceived danger of fire fighters
evacuating the wrong victims. Medical staff could do triage inside the buildings and allocate
scarce transport resources more efficiently. This implies that ‘access’ regulations to data may
need to be changed on the hoof.

Support Emergent Interoperability
Guideline: Appreciate that interoperability might have to be achieved under the given
(unforeseen) circumstances with resources at hand (rather than those planned). This involves:

 Appreciation that communication demands are likely to be high even for simple tasks

 ‘Common operational picture’ is a process that involves centralized and distributed
sense-making activities

 there is a need to mix and match of ICT

 need for work-flow models that can accommodate and self-repair after disruption

 it must be possible to add/delete/modify people, tasks, channels

 support for resolving differences in ontologies

 support reasoning about functional capabilities of tools

8.2.6 Assembly of System(s) of Systems

Awareness of potential
Guideline: Make it possible for people to make themselves aware of as wide a set of available
resources as possible.

Example: In the Norway attacks the fact that a military ferry with large carrying capacity was
available for use was missed and significantly delayed the capture of Breivik.

Design for design
Guideline: Maximise the possibility and need for engagement with all aspects of the
technology.

Comment: Design is not finished ‘at design time’, there is design at use time or ‘design-after-
design’ (Ehn, 2008). There are implications for responsibility – engineers and designers are not
responsible for design after design. However, there are also implications for design at design
time. Ehn recommends meta-design or design for design as a strategy that both enables, but also
guides design in use. Technologies must be engaging. ‘The higher the level of engagement, the
less likely it is that people become enrolled in political programmes (inscribed into technologies
but) not of their choosing.’ (Introna, 2007:23). One implication is that there needs to be support

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 123 of 136

for people to make computing palpable or understandable, because only if that is possible for
them can they be creative and responsible with IT.

Awareness of systemic consequences
Guideline: Make it possible for people to make themselves aware of the implications of
‘plugging different systems together’.

Comment: What does this extended system allow people to see and do? Who can access what?

8.2.7 Information Sharing

Support Information Sharing
Guideline: Do not enforce information sharing by creating data ‘oceans’. Instead support
people’s practices of negotiating disclosure.

Comment: There are often good social, organizational, practical or political reasons for a ‘lack’
of interoperability. BRIDGE technologies should support how interoperability, expertise,
collaboration is actually practiced, not (just) how it is described and regulated in official
emergency plans and command and control structures. This means that technical solutions
should be incremental solutions, co-realized in an iterative approach, as enablers of
communication practices.

Enforce Data minimization
Guideline: Enforce minimization of collection, processing and sharing of personal data at all
points.

Comment: This can be achieved through e.g. anonymization, encryption, blind and group
signatures, anonymous credentials, oblivious transfer.

Respect Privacy by Default
Guideline: Utilise the best available privacy preserving techniques at all levels.

Comment: Privacy by Default (at the moment) implies that a set of principles are followed:

 informational self-determination - people need to be able to know who knows what
when about them

 informed consent - free, informed and explicit consent is mandatory, unless exceptions
apply. Any exceptions that apply and the reason why must be specified.

 data minimization – see above
 transparency - people must be able to understand what data is collected, why and what

potential consequences might be. This can be achieved, e.g. through the use of TETs
(Transparency Enhancing Tools), such as ..., 'user centric identity management',
'privacy agents'

 the right to be forgotten - ��

In an open system that encourages assembly and emergent interoperability, privacy cannot be
guaranteed. However, the BRIDGE middleware and BRIDGE systems should ensure that the
state of the art of privacy preserving technologies can be used. Such technologies include:
Privacy Enhancing Technologies, Transparency Enhancing Technologies, Privacy Preserving
Technologies (for example enabling encrypted search in encrypted data, necessitating social
mechanisms for decryption that help avoid misuse of data (Agrawal 2000, Erkin, et al 2009)

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 124 of 136

Support Awareness of systemic consequences in information sharing
Guideline: Allow people to notice and reason about systemic consequences of information
sharing in systems of systems.

Comment: It may be possible to de-anonymize anonymized data when data is brought together
from different sources.

Example: Krumm (2007) analysed GPS data from 172 drivers and was able to infer the actual
home address in 13 per cent of all cases, and the actual names in 5 per cent. Matsuo et al. (2007)
showed how indoor mobility data can be used to infer detailed demographic information, such
as the user’s age. Bettini et al. (2005) have thus argued that location history can act as a quasi-
identifier of users.

8.2.8 Provide Security
Guideline: Undertake the best possible effort at the time to design for and to enact secure data
flows, use, storage. Ensure that the system is able to use any advanced mechanisms developed
in the future.

Comment: It is not possible to guarantee and enforce security in an open system of systems.
However, designers and users must undertake the best possible effort at the time to design for
and to enact secure data flows, use, storage. Tools include: Security Assertion Markup
Language (SAML) - see Brechlerova et al 2008 for application in healthcare data spaces and
McKenzie 2008 for use in e-government.

Enforce Traceability (accountability)
Guideline: Allow for all transactions (addition, amendments, deletions, etc.) to be traced to
individual actors (human or non-human).

Enable Adequate access control
Guideline: Allow for all transactions (addition, amendments, deletions, etc.) to be traced to
individual actors (human or non-human).

Capture Contextual Data
Guideline: Capture contextual data to support reasoning about the context of activities and
decisions in real time and retrospectively.

Comment: Capturing and enabling inspection of the context of data may support sense-making.
It requires capture of contextual data alongside data or support for temporal/spatial/link
exploration.

8.3 Conclusion
The BRIDGE architectural qualities and ELSI design guidelines are a step towards defining the
overall philosophy of BRIDGE middleware and systems and systems innovation for large scale,
multi-agency emergency response and support people in realising it. This is an effort at the
frontier of research and development of emergency management information systems. The work
presented here is under development, but provides a sense of the most central issues involved.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 125 of 136

References

Adey, Peter. 2009. “Facing airport security: affect, biopolitics, and the preemptive securitisation of the
mobile body.” Environment and Planning D: Society and Space 27(2):274–95. Retrieved
(http://www.envplan.com/abstract.cgi?id=d0208).

Agamben, G. (2005). State of Exception. Chicago: Chicago University Press.

Agrawal, R. S. (2000). Privacy-Preserving Data Mining. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.1561

Amoore, L. 2006. “Biometric borders : governing mobilities in the war on terror.” Political Geography
25(May 2005):336–51. Retrieved (http://dx.doi.org/10.1016/j.polgeo.2006.02.001).

Amoore, L. 2011. “Data Derivatives: On the Emergence of a Security Risk Calculus for Our Times.”
Theory, Culture & Society 28(6):24–43. Retrieved March 2, 2013
(http://tcs.sagepub.com/content/28/6/24).

Aradau, C., Lobo-Guerrero, L., & Van Munster, R. (2008). Security, Technologies of Risk, and the
Political: Guest Editors’ Introduction. Security Dialogue, 39(2-3), 147–154.
doi:10.1177/0967010608089159

Badica C. & Scafes M. (2011): Conceptual Framework for Design of Service Negotiation in Disaster
Management Applications, Advances in Practical Multi-Agent Systems, volume 325, Springer
Berlin / Heidelberg, 359–375, Eds: Bai, Quan, and Fukuta, Naoki, 2011.

Beringer, J. (2004): End-User Development: Reducing Expertise Tension. Communications of the ACM,
47(9), pp. 39-40.

Bettini, C., Wang, X.S. and Jajodia, S. (2005) Protecting Privacy Against Location-based Personal
Identification. In Proceedings of the 2nd Intl. VLDB Workshop on Secure Data Management (SDM
2005), LNCS 3674, Berlin: Springer: 185–99.

Brown, Ian, and A. A. Adams. 2007. “The ethical challenges of ubiquitous healthcare.” International
Review of Information Ethics 8:53–60. Retrieved (http://centaur.reading.ac.uk/15153/).

Büscher, M., Simonsen, J., Bærenholdt, J. O., & Scheuer, J. D. (2010). Design research. Synergies from
interdisciplinary perspectives. (J. O. . B. M. . D. S. J. . S. J. Bærenholdt, Ed.). Routledge. Retrieved
from http://www.amazon.com/Design-Research-Interdisciplinary-Perspectives-
ebook/dp/B0042FZZ0O

Crang, Mike, and Stephen Graham. 2007. “Sentient cities : ambient intelligence and the politics of urban
space.” Information Communication Society 10(6):789–817. Retrieved
(http://dx.doi.org/10.1080/13691180701750991).

Day, J. and Zimmerman, H. (1983): The OSI Reference Model. In Proceedings of the IEEE, (71)12:1334-
1340

Dertouzos, M. (1997): What Will Be: How the New World of Information Will Change Our Lives.
Harper-Collins, New York, NJ, USA.

Dillon, M., and L. Lobo-Guerrero. 2009. “The Biopolitical Imaginary of Species-being.” Theory, Culture
& Society 26(1):1–23. Retrieved May 25, 2013 (http://tcs.sagepub.com/content/26/1/1.short).

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 126 of 136

Dzida, W., & Freitag, R. (1998). Making use of scenarios for validating analysis and design. IEEE
Transactions on Software Engineering, 24(12), 1182‐1196.

Ehn, P. (2008). Participation in design things, 92–101. Retrieved from
http://dl.acm.org/citation.cfm?id=1795234.1795248

ENISA. 2012. Emergency Communications Stocktaking. A study into Emergency Communications
Procedures. Retrieved April 28, 2013 (http://www.enisa.europa.eu/media/news-items/report-looks-
at-improving-emergency-communications).

Erkin, Z.; Franz, M.; Guajardo, S.; Katzenbeisser, S.; Lagendijk, I. and Toft, T. (2009) Privacy-
Preserving Face Recognition. Privacy Enhancing Technologies, Lecture Notes in Computer Science
Volume 5672, 2009, pp 235-253.

Fischer, G. (2002): Beyond 'Couch Potatoes': From Consumers to Designers and Active Contributors.
Available at http://firstmonday.org/issues/issue7_12/fischer/ , FirstMonday (Peer-Reviewed Journal
on the Internet), 7 (12)

Furedi, F. (2006). Culture of Fear (p. 212). Continuum International Publishing Group Ltd. Retrieved
from http://www.amazon.co.uk/Culture-Fear-Frank-Furedi/dp/0826493955

Graham, S. (2008). Cities Under Siege: The New Military Urbanism, 1–555. Retrieved from
http://www.amazon.co.uk/Cities-Under-Siege-Military-Urbanism/dp/1844673154

Graham, S., & Marvin, S. (2001). Splintering urbanism. Business (p. 479). Routledge. Retrieved from
http://www.geography.dur.ac.uk/information/staff/personal/graham/pdf_files/21.pdf

Hertzum, M., & Simonsen, J. (2011). Effects-Driven IT Development: Specifying, realizing, and
assessing usage effect. Scandinavian Journal of Information Systems, 23(1). Retrieved from
http://aisel.aisnet.org/sjis/vol23/iss1/1

Introna, L. D. (2007). Maintaining the reversibility of foldings: making the ethics (politics) of information
technology visible. Ethics and Information Technology, 9(1), 11–25. Retrieved from
http://eprints.lancs.ac.uk/4729/

Johnson, B. 2012. “Taking Greater London Forward. Mayoral Manifesto.” Retrieved August 2, 2013
(http://www.scribd.com/doc/91943852/Taking-Greater-London-Forward).

Knight, Ken. 2013. Facing the future. Findings from the review of efficiencies and operations in fire and
rescue authorities in England. Retrieved August 3, 2013
(https://www.gov.uk/government/publications/facing-the-future).

Krumm, J. (2007) Inference Attacks on Location Tracks. In Pervasive Computing, 5th International
Conference, PERVASIVE 2007, Toronto, Canada, 13-16 May, Proceedings. LNCS 4480. Berlin:
Springer: 127–43.

Lieberman, H., Paternó, F. Wulf, V. (eds.) (2006): End User Development. Springer, Berlin, Germany.

Lyon, D. (1994). The Electronic Eye: The Rise of Surveillance Society (p. 270). U of Minnesota Press.
Retrieved from http://books.google.com/books?id=0ax3RYomoG0C&pgis=1

Lyon, D. 2002. Surveillance as social sorting. edited by David Lyon. Routledge. Retrieved
(http://www.youtube.com/watch?v=xtAa-f-1rTg&feature=youtube_gdata).

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 127 of 136

MacLean, A., Carter, K., Lövstrand, L., Moran, T.P. (1990): User-Tailorable Systems: Pressing the Issue
with Buttons. In Int. Conference on Computer-Human-Interation (CHI'90), (Seattle, WA. USA,
1990), ACM Press, pp. 175-182.

Matsuo, Y., Okazaki, N., Izumi, K., Nakamura, Y., Nishimura, T., Hasida, K., Nakashima, H. (2007)
Inferring long-term user properties based on users’ location. Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI 2007): 2159-2165.

Mørch, A. (1997): Method and Tools for Tailoring of Object-oriented Applications: An Evolving
Artefacts Approach. PhD-Thesis, University of Oslo, Department of Computer Science, Research
Report 241, Oslo (Norway)

Maeda, Y., Higashida, M., Watsuki, K., Handa, T., Kihara, Y., and Hayashi, H. 2010. “Next Generation
ICT Services Underlying the Resilient Society.” Journal of Disaster research 5(6):627–35.
Retrieved (www.fujipress.jp/JDR/DSSTR00050006.html).

Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. Smarter Cities and Their Innovation
Challenges. , 44 Computer 32–39 (2011). IEEE. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5875937&tag=1

Pavlin, G., Kamermans, M. & Scafes M. (2010): Dynamic Process Integration Framework: Toward
Efficient Information Processing in Complex Distributed Systems, Informatica 34(4): 477-490 .

Pavlin, G., de Oude, P., Maris, M., Nunnink, J., Hood, T.: A multi-agent systems approach to distributed
bayesian information fusion. Information Fusion 11(3): 267-282 (2010)

Rozanski, N. and Woods, E. (2005): Software systems architecture: working with stakeholders using
viewpoints and perspectives, Pearson Education.

Scheppele, K. L. (2003). Law in a Time of Emergency: States of Exception and the Temptations of 9/11.
University of Pennsylvania Journal of Constitutional Law, 1001. Retrieved from
http://heinonline.org/HOL/Page?handle=hein.journals/upjcl6&id=1015&div=&collection=journals

Schmidt, D.C. (2002): Middleware for real-time and embedded systems. Communications of the ACM,
45(6): pp. 43-48

Solove, Daniel J. (2004). The Digital Person: Technology and Privacy in the Information Age. NY: NYU
Press.

Steenbruggen, J., Borzacchiello, M. T., Nijkampa, P., & Scholten, H. (2013). Data from
telecommunication networks for incident management: An exploratory review on transport safety
and security. Transport Policy, 28, 86–102. Retrieved from
http://www.sciencedirect.com.ezproxy.lancs.ac.uk/science/article/pii/S0967070X12001400

Stevens, W.P., Myers, G.J., Constantine, L.L. (1974). Structured Design. IBM Systems Journal, Vol.
13(2), pp. 115-139

Suchman, L. (2007). Human-Machine Reconfigurations (p. 314). Cambridge University Press.

Tanenbaum, A.S. and Van Steen, M.: (2007) Distributed Systems. Principles and Paradigms. Addison-
Wesley

Tulich, T. (2012). A view inside the preventive state: Reflections on a decade of anti-terror law. Griffith
Law Review.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 128 of 136

Urry, J. (2013). Societies Beyond Oil: Oil Dregs and Social Futures (p. 304). Zed Books Ltd. Retrieved
from http://www.amazon.co.uk/Societies-Beyond-Oil-Social-Futures/dp/1780321694

Wulf, V., & Golombek B. (2001): Direct Activation: A Concept to Encourage Tailoring Activities.
Behaviour and Information Technology, 20 (4), pp. 249-263

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 129 of 136

Appendix A – Initial Services

Resource Management

Name Source Uses Dependencies Description

Resources Which resource are where
and what equipment do
they have

Available
resources

 Track At large /Nearby

Remote
Resource
Allocation

 Alarm Central or command
center can provoke/engage
in allocation and
reallocation by means of
access to ‘Master table’

Resource
allocation
service

 Allocate resources to tasks
in WFS

Delegate
Resource

 In team situations or shift
view.

Where is ‘my’
resources

 Positioning Status, Position role
dependent

Share ‘my’
resources

 To selected partners

Query
Person/resource

 To send specific questions to
a specific resource

Update media Central decentralized;
Experts; Restriction Volume
of data flowing via social
media. Controlling info flow
to media by releasing regular
feeds of updates

Task Management

Name Source Uses Dependencies Description

Direct resources

Knowledge Management

Name Source Uses Dependencies Description

Tips of the trade What has been done before
Ideas for dealing with

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 130 of 136

certans scenarios

Routines

 Material: *Routines
*Checklist. ‐inf.rep. ‐master.
‐ central cache of used info.

Information Management

Name Source Uses Dependencies Description

Information
Timeline

Last heard of

 See when the last ‘Ping’ was
sent

Timestamp

Identity
 Sender

Reciever

Distribution

Synchronisation

Workflow

Name Source Uses Dependencies Description

WF Generator

 Generate WF based
on required
information/service
needed

WF Composition
 Compose WF from

smaller WF's

Agent instantiation &
configuration

 Instantiate &
configure software
processes for duty
in a WF

WF Monitoring

Weather

Name Source Uses Dependencies Description

Forecast
 Overall conditions, over

time. Local/Regional

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 131 of 136

Wind

Rain

Environment Monitoring

Name Source Uses Dependencies Description

Humidity
Weather

 Forecast, static sensors,
deployed sensors

Temperature
Weather

 Forecast, static sensors,
deployed sensors

Vibration Static sensors, deployed
sensors

Oxygen level Static sensors, deployed
sensors

Toxic level Modelling, static sensors,
deployed sensors

Victims

Name Source Uses Dependencies Description

Where should I
go next

Where are the safe zones

Nearest safe
area

 Guidance to areas that are
safe

Health Monitoring

Name Source Uses Dependencies Description

Vital signs Human
assessment,
sensors

Triage Sensor monitoring. Heart
rate, respiratory rate, blood
pressure, oxygen saturation.

Triage

Name Source Uses Dependencies Description

(PPHDT)
Portable Patient
Health Data
Transfer

 Information on virtual signs
stored in device (bracelet)
that follows patient when
evacuated (‐> hospital).

Incident Information

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 132 of 136

Name Source Uses Dependencies Description

Forecast # of
injured in a
certain area

 Modelling

Commander

Incident details

 Information storage;
Master; Central with
replication; Leaders + some
responders

Security

Name Source Uses Dependencies Description

System
Protection (‘Red
button’)

 A way to shut‐down (parts
of) BRIDGE in case of cyber
attack or perpetrators taking
control during terror attack

Map

Name Source Uses Dependencies Description

Geography

Building

Danger Danger in which direction

White spots
 Where do we miss

information

Plot on map Draw points on map

Location

Name Source Uses Dependencies Description

Positioning

Static‐,
deployable‐
, wearable
sensors,
visual

Coordinates GPS, Map

Remote (Device) Control

Name Source Uses Dependencies Description

Re‐Direction

 Is it possible to develop a
service to control traffic
flows. Override the traffic
lights.

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 133 of 136

Remote Control
of public Web
camera

 IC or alarm centre can
remotely control angle of
web camera that are deploy
in e.g. government area

Log Services

Name Source Uses Dependencies Description

Forget/destroy
data

Search logs
 Information

Timeline

Activity logging

Event logging

Forget/destroy
data

Search logs

Risk Management

Name Source Uses Dependencies Description

Provide risk
warnings

 ‐ Provide contextualised
warnings. ‐ Terminal and
adapt.

International Aspects

Name Source Uses Dependencies Description

Language
 Different language between

countries and agencies.

Organisation
 Different routines etc. for

different organisations.

Culture Culture difference

Transformation

Name Source Uses Dependencies Description

Conversion
(MM)

 Provide a2b style service
Takes input format (text,
pictures, audio, video, …),
produces output format

Information Tailors/filters information

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 134 of 136

tailoring from command post to
persons in the field
according to device, role,
specific location, needs,
time,…

Information Distribution

Name Source Uses Dependencies Description

?

Site Information Retrieval

Name Source Uses Dependencies Description

External
information
retrieval

 Find existing information
sources, e.g. sensors

Building
information

 Blueprint

Drawing

Image

Land surveying

Information Sharing

Name Source Uses Dependencies Description

datAgent Support data exchange
between
police/health/fire/other
organisations

Alert/Alarm/Notification

Name Source Uses Dependencies Description

Sensor alert
 Let me know when this

sensor goes below x

Notify ICE

 Notify families of people
involved
Gather medical data of
victims

Alarm button 112

Personal
alerting

Akinator

Change
monitoring

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 135 of 136

Track & Trace

Name Sour
ce

Uses Dependencies Description

Remember
this

Tag point of interest

Checked
spaces

 Anybody that passes
eTriage

Track

 Sensors

Sensors, geo‐tag

eTriage

Location/Position Track and/or trace
specific resources,
object, victim.

Geo‐tag
 Physically relate a

piece of information
to a place (Geo‐tag)

Network & Communication

Name Source Uses Dependencies Description

Online
 Too see if I am

communicating or alone

Opportunistic
networking

 Communicate via best
available channel

QoS

Connect/Disconnect

Ad‐hoc

Availability

Reachability

Service
orchestration

Social Media

Name Source Uses Dependencies Description

Social Respond
 Public needs to organize itself in

emergency situations

Filter false
rumours

 Identification/reduction/correction
of propagation of false rumours in
social media (e.g. twitter)

Twitter
 Communicate quickly in 1

direction

Religious
counselling for
victims?

Social media
 Regular posts regarding

situation/disseminate
rumours/direct followers

Version 1.0: Final 30.11.2013

D4.2: Functional View on the BRIDGE System
Architecture Page 136 of 136

Social media
 Post about current

situation/warning/avoid area via
smart phones, sms

Crowd sourcing
 Retrieve information from a log of

many peoples communication or
questionaries’

Access to social
media

Geo ref

Social media
access

 Provide access to image and video
from social media sites on the web
Basis for information
filtering/aggregation service
Requires internet
communication/web access

Information
filtering/
Aggregation

 Inspects image/video from social
networks and BRIDGE repositories
for material on current emergency
Produces summary of this material
for operational picture depending
on interests/search of ‘filter
assistant’

Expert Localization Services

Name Source Uses Dependencies Description

Request advice

Find expert

Identification Service

Name Source Uses Dependencies Description

?

Modelling Services

Name Source Uses Dependencies Description

Create model
(?)

 Structural data,
Geographical data, Weather
data

Access model
archive

